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Abstract. Generally, the material and structure have non-linear properties. However, both static and dynamic 

structural calculations are solved linearly because of the complexity and time-consuming of calculations if 

done non-linearly. For certain cases the simplification of the non-linear system into a linear system or 

linearly calculated is no longer sufficient. If the material works outside the linear region, then the structure 

must be solved by non-linear calculations. Non-linear system equations with large deformations can use non-

linear Duffing models. Non-linear system equations can be solved by a variety of classical methods, such as 

the Runge-Kutta method and equivalent linearization which requires a long calculation time. In this paper a 

rectangular shape concrete plate model will be used using non linear spring duffing models at the four ends 

that are solved using non-linear modal analysis. The calculation results show that the use of non-linear modal 

analysis requires a much shorter calculation time than other classical methods. 

Abstrak. Umumnya material dan struktur mempunyai sifat-sifat non-linier. Namun secara kebiasaan umum 

perhitungan struktur baik statik maupun dinamik diselesaikan secara linier karena masalah kerumitan dan 

lamanya perhitungan jika dilakukan secara non-linier. Untuk kasus-kasus tertentu penyederhanaan sistem 

non-linier menjadi sistem linier atau dihitung secara linier tidak memadai lagi. Jika  material tersebut bekerja 

di luar daerah linier, maka struktur harus diselesaikan dengan perhitungan non-linier.  Persamaan sistem non-

linier dengan deformasi yang besar dapat menggunakan model non-linier Duffing. Persamaan sistem non-

linier dapat diselesaikan dengan berbagai metode klasik, seperti metode Runge-Kutta dan linierisasi ekivalen 

yang membutuhkan waktu perhitungan lama. Pada makalah ini akan digunakan model pelat beton bentuk 

persegi empat dengan menggunakan pegas non-linier model duffing pada keempat ujungnya yang 

diselesaikan dengan menggunakan analisis modal non-linier. Hasil perhitungan menunjukan bahwa 

penggunaan analisis modal non-linier membutuhkan waktu perhitungan jauh lebih singkat dibandingkan 

metode-metode klasik lainnya. 
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Pendahuluan 

Sebagian besar material mempunyai sifat non-

linier. Pada umumnya dalam desain material 

dianggap mempunyai karakteristik linier. Hal ini 

hanya benar, jika material tersebut bekerja pada 

daerah linier atau hampir linier dan belum 

mencapai daerah non-linier. Jika material tersebut 

bekerja di luar daerah linier, maka material harus 

dimodelkan sebagai material atau sistem non-linier. 

Pada bidang teknik mesin, contoh dari sistem ini 

antara lain, adalah struktur yang mengalami 

deformasi yang besar yang biasa disebut sebagai 

non-linier geometri, atau karena materialnya 

mempunyai sifat non-linier yang dikenal sebagai 

non-linier histeresis. 

Prosedur analitik untuk penanganan persamaan 

diferensial non-linier relatif lebih rumit 

dibandingkan dengan penanganan persamaan 

diferensial linier, dan membutuhkan studi 

matematika yang lebih panjang. Solusi eksak yang 

diketahui sangatlah sedikit, dan sebagian besar 

pengetahuan dari sistem non-linier datang dari 

solusi pendekatan, baik grafis maupun numerik. 

Solusi dari mode non-linier dapat diperoleh 

dengan relatif mudah dengan menggunakan metode 

integrasi numerik, seperti metode Runge-Kutta. 

Hasil dari metode ini adalah dalam domain waktu, 

yang menunjukkan keadaan dari suatu titik dari 

struktur pada saat tertentu. Kelemahan dari metode 

ini adalah tidak efektif dan tidak efisien untuk 
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mencari solusi stasioner karena membutuhkan 

waktu perhitungan yang cukup lama. Sistem non-

linier yang akan dibahas pada bagian ini adalah 

sistem non-linier yang mempunyai solusi stasioner 

harmonik. 

Oleh karena itu tujuan penelitian ini adalah 

menentukan respon dinamik stasioner non-linier 

dengan metode yang lebih sederhana dan waktu 

yang lebih cepat.  

Metode Penelitian 

Model Dinamik. Pemodelan sistem non-linier 

dapat dilihat pada Gambar 1 di bawah ini. 

 

 

Persamaan dinamik untuk sistem non-linier 

berderajat banyak diberikan sebagai berikut: 

             )(, tpxxfxxx   KCM  (1) 

di mana x , x , dan x adalah akselerasi, kecepatan, 

dan perpindahan absolut dan  ),( xxf   adalah vektor 

dari kekakuan non-linier. Persamaan dinamik di 

atas merupakan persamaan diferensial non-linier. 

Jika  ),( xxf   sama dengan  0  maka persamaan di 

atas adalah persamaan dinamik linier. 

Pada sistem non-linier, titik-titik simpul 

dihubungkan oleh elemen-elemen non-linier yang 

perilakunya tergantung pada koordinat relatif antara 

titik-titik itu. Jadi lebih baik jika bekerja dalam 

koordinat relatif u dengan mentransformasikan 

matriks  M ,  C , dan  K  dari koordinat absolut xi ke 

koordinat relatif ui. Hubungan antara koordinat 

relatif dengan absolut adalah  

1 iii xxu  (2) 

Transformasi koordinat pada Persamaan (1) 

dengan koordinat relatif Persamaan (2), maka 

Persamaan (1) berubah menjadi: 

             )(
~

,
~~~~

tpuufuuu   KCM  (3) 

di mana u , u , dan u adalah akselerasi, kecepatan, 

dan perpindahan relatif,  M
~

,  C
~

, dan  K
~

 adalah 

matriks massa relatif, matriks redaman relatif, dan  

matriks kekakuan relatif, serta  ),(
~

uuf   adalah 

vektor dari kekakuan non-linier yang bisa 

merupakan beberapa alternatif fungsi, seperti yang 

akan dibahas setelah ini. 

Persamaan Duffing. Duffing membuat studi 

yang ekstensif mengenai persamaan vibrasi model 

satu derajat kebebasan: 

tPukuucum  cos
3  (4) 

di mana ),(
~

uuf   merupakan fungsi perpindahan yaitu 

.u3 dan )(
~

tp  adalah gaya harmonik dengan 

frekuensi  . 

Persamaan di atas mempresentasikan sebuah 

massa pada pegas kubik  yang dieksitasi secara 

harmonik. Tanda  melambangkan pegas yang 

mengeras atau pegas yang melunak. 

Persamaan (6) dapat ditulis dalam bentuk lain 

tPuuuu nnn  cos2
32  (5) 

di mana 
n  dan 

n  adalah frekuensi natural dan 

rasio redaman. 

Untuk sistem dinamik dengan persamaan 

Duffing terjadi lompatan tiba-tiba dari amplitudo-

respon di daerah sekitar resonansi. Untuk tipe pegas 

keras, dengan peningkatan frekuensi eksitasi, 

amplitudo perlahan-lahan meningkat sampai titik 1 

pada Gambar 2 dicapai. Kemudian amplitudo tiba-

tiba jatuh pada nilai yang jauh lebih rendah pada 

titik 2, dan seterusnya menurun mengikuti kurva ke 

arah kanan. Ketika terjadi penurunan frekuensi dari 

arah yang berlawanan, amplitudo meningkat 

mengikuti kurva ke arah kiri melewati titik 2 

sampai pada titik 3, kemudian tiba-tiba melompat 

ke nilai amplitudo yang jauh lebih tinggi pada titik 

4 dan seterusnya menurun mengikuti kurva ke arah 

kiri.  

Daerah yang diarsir pada kurva amplitudo-

respon vs frekuensi eksitasi merupakan daerah yang 

tidak stabil; ekstensitas dari ketidakstabilan 

tergantung pada beberapa faktor antara lain seperti 

besarnya redaman yang ada dan laju perubahan dari 

frekuensi eksitasi. 
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Gambar 1 Model non-linier dari sistem dengan n 

derajat kebebasan 
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Gambar 2 Fenomena Lompatan pada sistem non-linier 

Duffing dengan redaman (tipe pegas keras) 

Solusi Persamaan Dinamik Sistem Non-

Linier. Solusi persamaan dinamik non-linier yang 

paling mudah adalah menggunakan metode 

integrasi numerik seperti Runge-Kutta. Metode 

domain waktu ini membutuhkan waktu sangat 

lama. Khusus untuk solusi stasioner telah banyak 

dikembangkan metode lain yang lebih efisien 

antara lain metode linierisasi ekivalen dan metode 

analisis modal non-linier. 

Metode linierisasi ekivalen jauh lebih efisien 

dibanding metode Runge-Kutta dalam memecahkan 

solusi stasioner dari persamaan dinamik dimaksud, 

tetapi untuk sistem berderajat kebebasan banyak, 

metode yang berdasar pada metode eksak ini juga 

memakan waktu yang relatif lama dibanding 

metode berikutnya yaitu metode modal non-linier. 

Keunggulan metode modal non-linier, 

disamping kesederhanaan matematik dan waktu 

komputasi yang cepat untuk sistem dengan banyak 

derajat kebebasan, juga karena metode ini bekerja 

pada basis modal di mana parameter-parameter 

modal mudah didapat dari data eksperimental. 

Metode linierisasi ekivalen dapat memecahkan 

solusi stasioner persamaan diferensial non-linier 

dengan relatif mudah untuk sistem yang derajat 

kebebasannya masih sedikit, tetapi untuk 

mendapatkan solusi dari sistem yang berderajat 

kebebasannya banyak, metode ini sangat memakan 

waktu. 

Telah dilakukan studi oleh Setio dan Jezequel 

[1] untuk memperoleh solusi stasioner yang cepat 

dan sederhana untuk analisis dinamik struktur besar 

yang mempunyai perilaku nonlinier. Solusinya 

didasarkan pada analisis modal linier yang sudah 

dikenal luas. Mode normal non-linier digunakan 

untuk mentransformasikan suatu set dengan n 

persamaan terkait menjadi suatu set dengan n 

persamaan lepas dalam basis modal. Untuk 

kepentingan rekayasa praktis, prosedur ini dapat 

mengurangi waktu perhitungan secara signifikan 

dengan menggunakan hanya beberapa modal.  

Konsep mode normal non-linier dari sistem 

pegas-massa non-linier dipelajari pertama kali oleh 

Rosenberg dan dikembangkan kemudian oleh 

Szemplinska-Stupnicka [2,3]. Ditunjukkan bahwa 

mode dari vibrasi dalam kondisi resonansi sangat 

mirip dengan mode normal non-linier dan tidak 

mirip dengan mode normal linier. Dan ditunjukkan 

bahwa mode normal non-linier dapat digunakan 

sebagai pendekatan solusi untuk sistem besar yang 

mempunyai perilaku non-linier [4]. 

Dalam analisis dinamik, solusi dari model 

diperoleh dengan mengasumsikan bahwa semua 

parameter yang dibutuhkan diketahui. Pada 

kenyataannya, dalam situasi-situasi praktis, 

sebagian besar dari parameter-parameter yang 

penting tidak diketahui, khususnya parameter non-

linier, yang sangat sulit ditentukan. Banyak dari 

prosedur indentifikasi non-linier yang ada sekarang 

mempunyai masalah pada kompleksitas matematik, 

laju konvergensi, kebutuhan penyimpanan data, dan 

waktu komputasi yang sangat lama. 

Analisis modal non-linier, sebagai 

pengembangan dari analisis modal standar, dapat 

aplikasikan pada prosedur identifikasi parameter 

modal-non-linier. Prosedur ini dapat diterapkan 

pada sistem berderajat kebebasan banyak. 

Persamaan dinamik untuk sistem non-linier 

konservatif otonom tanpa redaman dalam basis 

koordinat relatif pada Persamaan (3) dapat ditulis 

sebagai berikut.  

         0,
~~~

 uufuu  KM  (6) 

Analog seperti pada kasus linier, solusi dari 

persamaan di atas dapat didekati sebagai kombinasi 

linier dari n mode normal non-linier )(
~

jj Q  dan n 

amplitudo-modal jQ : 

   



n

j

jjj tyQtu
1

)()(
~

)(  (7) 
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di mana  )(tu  adalah vektor kompleks dari 

perpindahan;  )(
~

jj Q  dan jy  adalah mode normal 

non-linier dari mode ke-j dan perpindahan dalam 

koordinat modal ke-j. 

Mode Normal Non-Linier. Untuk sistem 

banyak derajat kebebasan non-linier dengan 

redaman yang ringan, solusi stasioner pada kondisi 

resonansi dapat dianggap sebagai sebuah mode 

normal non-linier. Oleh karena itu, sistem banyak 

derajat kebebasan dalam Persamaan (6) direduksi 

menjadi sistem  satu derajat kebebasan yang 

digambarkan oleh koordinat-koordinat normal 

resonansi tunggal. Persamaan (7) dalam koordinat 

normal menjadi 

    )(
~

)(
~

)( tyQtu jjj  (8) 

dengan  )(
~

jj Q  adalah mode normal non-linier dari 

mode ke-j dan jy
~

 adalah koordinat modal dari 

mode ke-j dalam basis koordinat relatif. Jika gaya 

eksitasi yang bekerja adalah periodik, maka respon 

stasioner pada umumnya akan berbentuk periodik 

dengan frekuensi yang sama dengan frekuensi 

eksitasi  , maka pada j
~

, solusi mode normal 

tunggal dari Persamaan (8) menjadi persamaan (9) 

di mana jQ  adalah amplitudo-modal. 

  tQjQtu jjj 
~

cos..)(
~

})({  (9) 

Asumsi mode tunggal (single mode) pada 

kondisi-kondisi resonansi dan asumsi solusi 

periodik dalam persoalan non-linier dipakai dan 

diterima secara luas bahkan untuk sistem-sistem 

yang mempunyai tingkat kenon-linieran yang kuat. 

Frekuensi natural non-linier j
~

 dan mode 

normal non-linier j
~

 dapat diperoleh dengan 

memasukkan Persamaan (9) ke dalam Persamaan 

(6) dan mengabaikan semua suku-suku harmonik 

yang lebih tinggi: 

     jjjjQ 
~~~

)( MD  (10) 

di mana 

     )(
~~

)( jj QQ nlKKD   (11) 

dan  )(
~

jQnlK  adalah matriks  kekakuan non-linier 

yang merupakan fungsi dari amplitudo-modal jQ . 

Persoalan nilai-eigen pada Persamaan (10) 

bukanlah suatu bentuk standar linier, oleh karena 

itu, secara umum tidak dapat dipecahkan melalui 

solusi nilai-eigen standar. Persoalan nilai-eigen 

non-linier pada Persamaan (10). hanya dapat 

dipecahkan melalui prosedur-prosedur numerik. 

Ada banyak prosedur-prosedur numerik untuk 

memecahkan masalah nilai-eigen non-linier. Yang 

akan dipakai pada studi ini adalah prosedur 

Newton-Raphson. 

Persamaan (10) dapat disusun kembali menjadi 

bentuk berikut ini 

         )
~

,(
~~

)(
~~

jjjjj gQ  MKK nl  (12) 

n derajat kebebasan dari Persamaan (12) 

memiliki n+1 elemen-elemen nilai-eigen dan 

vektor-eigen yang tidak diketahui, sehingga 

Persamaan (12) tidak dapat digunakan untuk 

memperoleh n+1 yang tidak diketahui. Variabel-

variabel yang tidak diketahui harus disusun kembali 

agar Persamaan (12) dapat dipecahkan. Ini dapat 

diselesaikan dengan mengeset salah satu elemen 

dari vektor-eigen dengan nilai satu. Akhirnya, n 

variabel yang tidak diketahui dari Persamaan (12) 

dapat diperoleh lewat prosedur Newton-Raphson di 

bawah ini: 

         jjjj gGss 
 ~

,.
~

,
1

 (13) 

di mana 

 

   

 
 

   

 
 

        ipj

j

jj

ip

j

ijj

ipjj

j

j

ijj

ijj

jj

jj

njjj

j

d

Qd

d

d

d

d

d

d
,

M
K

K
g

G

M
g

G

s

g
G

s

nl

T

~
~

~
.

~
~

~

~
,~

,

~
.

~
~

,~
,

~
,~

~
...

~

1
~

1

2

1

























 
(14) 

dengan p = 2, 3,…, n dan s adalah vektor dari n 

tak diketahui dari 1 nilai-eigen dan n-1 elemen 

vektor- eigen. 

Menggunakan nilai sebelumnya dari amplitudo-

modal jQ , prosedur iteratif ini akan konvergen 

secara cepat. Nilai-nilai frekuensi natural linier dan 

mode normal linier dapat digunakan sebagai nilai-

nilai awal. 

Frekuensi-frekuensi natural non-linier dan 

mode-mode normal non-linier dari sistem non-linier 

diperoleh sebagai fungsi dari amplitudo-modal jQ  
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dengan peningkatan amplitudo-modal secara 

progresif: 

 

     jjj

jjj

Q

Q





~

2

B
 (15) 

di mana  B  adalah matriks  transformasi 

koordinat,   jj Q  dan   jj Q
~

 adalah mode 

normal non-linier dalam basis koordinat absolut 

dan dalam basis koordinat relatif. 

 

Analisis modal non-linier. Mengambil analogi 

untuk kasus linier, maka solusi persamaan gerak 

non-linier dapat didekati dengan kombinasi linier 

dari n buah mode-mode normal non-linier )(
~

jj Q  

dan n buah amplitudo-modal jQ : 

   



n

j

jjj tQQtu
1

cos.)(
~

)(  (16) 

di mana  )(tu  adalah vektor perpindahan kompleks, 

 )(
~

jj Q  dan jQ  adalah mode normal non-linier dan 

amplitudo modal non-linier pada mode-j yang 

didapat mode per mode, dengan menggunakan 

prosedur mode non-linier tunggal yang disebutkan 

pada sub-bab sebelum ini. 

Dengan memasukkan Persamaan (16) ke dalam 

persamaan dinamik sistem non-linier Persamaan 

(3), dan dengan mengasumsikan bahwa solusinya 

terkait secara ringan, Persamaan (3) yang telah 

ditransformasi menjadi 

jjjjjjjjj pQfQkQciQm
~

)(
~~~~2

  (17) 

di mana 

     

     

     

       

   P

K

K

C

M

nl

T

jjj

jj

T

jjj

T

jjjj

jj

T

jjj

jj

T

jjj

jj

T

jjj

Qp

QQQfQQf

QQk

QQc

QQm

)(
~~

)(
~

)(
~

)()(
~

)(
~

)(
~

)(
~~

)(
~

)(
~~

)(
~

)(
~~











 
(18) 

di mana  nlK  adalah bagian kekakuan non-linier 

dari sistem. 

Amplitudo-modal jQ  untuk setiap mode ke-j 

dari Persamaan (17) dapat diberikan oleh 

    

   j
jjj

T

jj

j

ciQm

Q
Q

~~

~

22

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
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di mana kekakuan linier dan non-linier dari sistem 

dalam basis modal dapat didekati dengan  

 jjjjjjj QmQfQk
2~

)(
~~

  (20) 

Setelah amplitude-modal jQ  diperoleh maka 

solusi persamaan non-linier dapat diperoleh dengan 

menggunakan Persamaan (16). Dengan n adalah 

jumlah mode yang diperhitungkan. 

Studi Kasus 

Studi kasus. Pada kasus ini akan dibahas 

karakteristik dan respon dinamik struktur pelat 

dudukan motor dengan kekakuan non liner lokal 

pada ujung-unjung pelat. 

Data dan ukuran pelat dapat dilihat pada Tabel 1. 

Tabel 1 Data dan ukuran pelat 

No. Data-data Nilai 

1 Modulus elastisitas beton 2x109 kg/m2 

2 Berat jenis beton 2400 kg/m3 

3 Poisson ratio beton 0,22 

4 Ukuran pelat pondasi 160 x 120cm 

5 Tebal pelat pondasi 10cm 

Penyusunan dilakukan terhadap elemen dengan 

perincian sebagai berikut : 

 Jumlah elemen = 12        

 Jumlah titik simpul tiap elemen = 4  

 Jumlah derajat kebebasan tiap titik simpul = 3 

 Jumlah total titik simpul dalam sistem = 60 

 

Gambar 3 Satu elemen dengan 4 titik simpul dan 12 

derajat kebebasan  

Penyederhanaan model pelat lentur dengan 12 

elemen, 20 titik, dan kekakuan non-linier pada 

ujung-ujung pelat yaitu titik 1, 5, 16, dan 20 pada 

arah z dapat dilihat seperti pada Gambar 4. Harga 

kekakuan non-linier pegas adalah k=6250 N/m dan 

α=200N/m3. Koefisien damping matriks C adalah 

0,001 dari nilai kekakuan matriks K. 
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Model pelat lentur dengan derajat kebebasan 

untuk masing-masing titik diurutkan sesuai Gambar 

5. 

 

 

 

 

 

 

 

 

 

Hasil dan Pembahasan 

Hasil karakterisitik sistem dinamik non-linier 

dapat dilihat pada Gambar 6. Dari grafik tersebut 

dapat dilihat bahwa frekuensi natural berubah 

terhadap amplitudo. 

 

Gambar 6 Frekuensi natural (rad/s) sistem non-linier 

fungsi dari amplitudo simpangan 

Pada Gambar 7 merupakan gambar respon 

fungsi frekuensi dari titik 1 arah z pada frekuensi 

pertamanya dengan amplitudo gaya 10 dan 50 

newton. Dari gambar ini terlihat bahwa puncak 

respon yang merupakan pada daerah frekuensi 

naturalnya berpindah ke arah kanan dengan 

membesarnya amplitude gaya F yang arahnya 

mengikuti sesuai dengan frekuensi natural pada 

Gambar 6. 

 

Gambar 7 Respon dinamik sistem non-linier fungsi 

frekuensi dari titik 1 arah z pada frekuensi 

pertamanya dengan amplitudo gaya 10 dan 50 

Newton 

Kesimpulan 

Studi mengenai sistem dinamik non-linier telah 

dilakukan untuk model pelat beton dengan 

menggunakan pegas non-linier pada keempat 

ujung-ujungnya. Metode analisis modal non-linier 

dapat digunakan dengan mudah untuk sistem 

dinamik non-linier dengan banyak derajat 

kebebasan. Hasil perhitungan menunjukan bahwa 

penggunaan analisis modal non-linier memerlukan 

waktu perhitungan yang jauh lebih singkat 

dibandingkan metode-metode lainnya. Penggunaan 

beberapa mode non-linier saja di sekitar respon 

dinamik yang ingin diketahui dapat mengurangi 

waktu perhitungan secara signifikan. 

Penghargaan 

Para penulis mengucapkan terima kasih kepada 

Fakultas Teknik Mesin dan Dirgantara, FTMD ITB 

atas dukungan dan bantuan dana untuk penelitian 

ini. 

Gambar 4 Model pelat lentur dengan  

kekakuan non-linier pada ujung-ujung pelat 

menggunakan elemen hingga 
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Gambar 5 Model pelat lentur dengan derajat 

kebebasan 
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