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Abstract. Generally, the material and structure have non-linear properties. However, both static and dynamic
structural calculations are solved linearly because of the complexity and time-consuming of calculations if
done non-linearly. For certain cases the simplification of the non-linear system into a linear system or
linearly calculated is no longer sufficient. If the material works outside the linear region, then the structure
must be solved by non-linear calculations. Non-linear system equations with large deformations can use non-
linear Duffing models. Non-linear system equations can be solved by a variety of classical methods, such as
the Runge-Kutta method and equivalent linearization which requires a long calculation time. In this paper a
rectangular shape concrete plate model will be used using non linear spring duffing models at the four ends
that are solved using non-linear modal analysis. The calculation results show that the use of non-linear modal
analysis requires a much shorter calculation time than other classical methods.

Abstrak. Umumnya material dan struktur mempunyai sifat-sifat non-linier. Namun secara kebiasaan umum
perhitungan struktur baik statik maupun dinamik diselesaikan secara linier karena masalah kerumitan dan
lamanya perhitungan jika dilakukan secara non-linier. Untuk kasus-kasus tertentu penyederhanaan sistem
non-linier menjadi sistem linier atau dihitung secara linier tidak memadai lagi. Jika material tersebut bekerja
di luar daerah linier, maka struktur harus diselesaikan dengan perhitungan non-linier. Persamaan sistem non-
linier dengan deformasi yang besar dapat menggunakan model non-linier Duffing. Persamaan sistem non-
linier dapat diselesaikan dengan berbagai metode klasik, seperti metode Runge-Kutta dan linierisasi ekivalen
yang membutuhkan waktu perhitungan lama. Pada makalah ini akan digunakan model pelat beton bentuk
persegi empat dengan menggunakan pegas non-linier model duffing pada keempat ujungnya yang
diselesaikan dengan menggunakan analisis modal non-linier. Hasil perhitungan menunjukan bahwa
penggunaan analisis modal non-linier membutuhkan waktu perhitungan jauh lebih singkat dibandingkan
metode-metode klasik lainnya.
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Pendahuluan Prosedur analitik untuk penanganan persamaan

Sebagian besar material mempunyai sifat non- diferensial ~ non-linier  relatif  lebih  rumit
linier. Pada umumnya dalam desain material dibandingkan dengan  penanganan  persamaan
dianggap mempunyai karakteristik linier. Hal ini ~ diferensial  linier, dan membutuhkan  studi

hanya benar, jika material tersebut bekerja pada ~ Matematika yang lebih panjang. Solusi eksak yang
daerah linier atau hampir linier dan belum diketahui sangatlah sedikit, dan sebagian besar
mencapai daerah non-linier. Jika material tersebut ~ Pengetahuan dari sistem non-linier datang dari
bekerja di luar daerah linier, maka material harus solusi pendekatan, baik grafis maupun numerik.

dimodelkan sebagai material atau sistem non-linier. Solusi dari mode non-linier dapat diperoleh
Pada bidang teknik mesin, contoh dari sistem ini dengan relatif mudah dengan menggunakan metode
antara lain, adalah struktur yang mengalami integrasi numerik, seperti metode Runge-Kutta.
deformasi yang besar yang biasa disebut sebagai Hasil dari metode ini adalah dalam domain waktu,
non-linier geometri, atau karena materialnya yang menunjukkan keadaan dari suatu titik dari
mempunyai sifat non-linier yang dikenal sebagai struktur pada saat tertentu. Kelemahan dari metode
non-linier histeresis. ini adalah tidak efektif dan tidak efisien untuk
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mencari solusi stasioner karena membutuhkan
waktu perhitungan yang cukup lama. Sistem non-
linier yang akan dibahas pada bagian ini adalah
sistem non-linier yang mempunyai solusi stasioner
harmonik.

Oleh karena itu tujuan penelitian ini adalah
menentukan respon dinamik stasioner non-linier
dengan metode yang lebih sederhana dan waktu
yang lebih cepat.

Metode Penelitian

Model Dinamik. Pemodelan sistem non-linier
dapat dilihat pada Gambar 1 di bawah ini.

Gambar 1 Model non-linier dari sistem dengan n
derajat kebebasan

Persamaan dinamik untuk sistem non-linier
berderajat banyak diberikan sebagai berikut:

[M]{x)+ [Clixt+ [P+ {F(xox)i={p@®)) (1)

di mana X, X, dan x adalah akselerasi, kecepatan,
dan perpindahan absolut dan {(x,x)} adalah vektor
dari kekakuan non-linier. Persamaan dinamik di
atas merupakan persamaan diferensial non-linier.
Jika { (% x)} sama dengan {0} maka persamaan di
atas adalah persamaan dinamik linier.

Pada sistem non-linier, titik-titik simpul
dihubungkan oleh elemen-elemen non-linier yang
perilakunya tergantung pada koordinat relatif antara
titik-titik itu. Jadi lebih baik jika bekerja dalam
koordinat relatif u dengan mentransformasikan
matriks [Mm], [c], dan [K] dari koordinat absolut x; ke
koordinat relatif ui. Hubungan antara koordinat
relatif dengan absolut adalah

Ui =X — Xjq 2

Transformasi koordinat pada Persamaan (1)
dengan koordinat relatif Persamaan (2), maka
Persamaan (1) berubah menjadi:

i [clap [Klup+ {Fowl- o) @

di mana i, u, dan u adalah akselerasi, kecepatan,
dan perpindahan relatif, [\], [C], dan [K] adalah
matriks massa relatif, matriks redaman relatif, dan

matriks kekakuan relatif, serta { ¥ (u,u)} adalah

vektor dari kekakuan non-linier yang bisa
merupakan beberapa alternatif fungsi, seperti yang
akan dibahas setelah ini.

Persamaan Duffing. Duffing membuat studi

yang ekstensif mengenai persamaan vibrasi model
satu derajat kebebasan:

mii + cu + ku + pu® = Pcos Ot (@)

di mana @) merupakan fungsi perpindahan yaitu
+p.u® dan )
frekuensi Q.
Persamaan di atas mempresentasikan sebuah
massa pada pegas kubik yang dieksitasi secara
harmonik. Tanda + melambangkan pegas yang

mengeras atau pegas yang melunak.
Persamaan (6) dapat ditulis dalam bentuk lain

adalah gaya harmonik dengan

i+ 28, 0,0+ 0,2+ uu® = Pcos Ot (5)

di mana o, dan & adalah frekuensi natural dan

rasio redaman.

Untuk sistem dinamik dengan persamaan
Duffing terjadi lompatan tiba-tiba dari amplitudo-
respon di daerah sekitar resonansi. Untuk tipe pegas
keras, dengan peningkatan frekuensi eksitasi,
amplitudo perlahan-lahan meningkat sampai titik 1
pada Gambar 2 dicapai. Kemudian amplitudo tiba-
tiba jatuh pada nilai yang jauh lebih rendah pada
titik 2, dan seterusnya menurun mengikuti kurva ke
arah kanan. Ketika terjadi penurunan frekuensi dari
arah yang berlawanan, amplitudo meningkat
mengikuti kurva ke arah Kkiri melewati titik 2
sampai pada titik 3, kemudian tiba-tiba melompat
ke nilai amplitudo yang jauh lebih tinggi pada titik
4 dan seterusnya menurun mengikuti kurva ke arah
Kiri.

Daerah yang diarsir pada kurva amplitudo-
respon vs frekuensi eksitasi merupakan daerah yang
tidak stabil; ekstensitas dari ketidakstabilan
tergantung pada beberapa faktor antara lain seperti
besarnya redaman yang ada dan laju perubahan dari
frekuensi eksitasi.
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Gambar 2 Fenomena Lompatan pada sistem non-linier
Duffing dengan redaman (tipe pegas keras)

Solusi Persamaan Dinamik Sistem Non-
Linier. Solusi persamaan dinamik non-linier yang
paling mudah adalah menggunakan metode
integrasi numerik seperti Runge-Kutta. Metode
domain waktu ini membutuhkan waktu sangat
lama. Khusus untuk solusi stasioner telah banyak
dikembangkan metode lain yang lebih efisien
antara lain metode linierisasi ekivalen dan metode
analisis modal non-linier.

Metode linierisasi ekivalen jauh lebih efisien
dibanding metode Runge-Kutta dalam memecahkan
solusi stasioner dari persamaan dinamik dimaksud,
tetapi untuk sistem berderajat kebebasan banyak,
metode yang berdasar pada metode eksak ini juga
memakan waktu yang relatif lama dibanding
metode berikutnya yaitu metode modal non-linier.

Keunggulan ~ metode  modal  non-linier,
disamping kesederhanaan matematik dan waktu
komputasi yang cepat untuk sistem dengan banyak
derajat kebebasan, juga karena metode ini bekerja
pada basis modal di mana parameter-parameter
modal mudah didapat dari data eksperimental.

Metode linierisasi ekivalen dapat memecahkan
solusi stasioner persamaan diferensial non-linier
dengan relatif mudah untuk sistem yang derajat
kebebasannya masih  sedikit, tetapi untuk
mendapatkan solusi dari sistem yang berderajat
kebebasannya banyak, metode ini sangat memakan
waktu.

Telah dilakukan studi oleh Setio dan Jezequel
[1] untuk memperoleh solusi stasioner yang cepat
dan sederhana untuk analisis dinamik struktur besar
yang mempunyai perilaku nonlinier. Solusinya
didasarkan pada analisis modal linier yang sudah

dikenal luas. Mode normal non-linier digunakan
untuk mentransformasikan suatu set dengan n
persamaan terkait menjadi suatu set dengan n
persamaan lepas dalam basis modal. Untuk
kepentingan rekayasa praktis, prosedur ini dapat
mengurangi waktu perhitungan secara signifikan
dengan menggunakan hanya beberapa modal.

Konsep mode normal non-linier dari sistem
pegas-massa non-linier dipelajari pertama kali oleh
Rosenberg dan dikembangkan kemudian oleh
Szemplinska-Stupnicka [2,3]. Ditunjukkan bahwa
mode dari vibrasi dalam kondisi resonansi sangat
mirip dengan mode normal non-linier dan tidak
mirip dengan mode normal linier. Dan ditunjukkan
bahwa mode normal non-linier dapat digunakan
sebagai pendekatan solusi untuk sistem besar yang
mempunyai perilaku non-linier [4].

Dalam analisis dinamik, solusi dari model
diperoleh dengan mengasumsikan bahwa semua
parameter yang dibutuhkan diketahui. Pada
kenyataannya, dalam  situasi-situasi  prakitis,
sebagian besar dari parameter-parameter yang
penting tidak diketahui, khususnya parameter non-
linier, yang sangat sulit ditentukan. Banyak dari
prosedur indentifikasi non-linier yang ada sekarang
mempunyai masalah pada kompleksitas matematik,
laju konvergensi, kebutuhan penyimpanan data, dan
waktu komputasi yang sangat lama.

Analisis modal non-linier, sebagai
pengembangan dari analisis modal standar, dapat
aplikasikan pada prosedur identifikasi parameter
modal-non-linier. Prosedur ini dapat diterapkan
pada sistem berderajat kebebasan banyak.

Persamaan dinamik untuk sistem non-linier
konservatif otonom tanpa redaman dalam basis
koordinat relatif pada Persamaan (3) dapat ditulis
sebagai berikut.

(Wi} [Kfu}+ {F.u) =0 (6)
Analog seperti pada kasus linier, solusi dari
persamaan di atas dapat didekati sebagai kombinasi
linier dari n mode normal non-linier ¢;@Q) dan n
amplitudo-modal Q; :

{uw t= {‘T’J‘(Qj)}yj(t) (7)

j=1
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di mana {u(t)} adalah vektor kompleks dari

perpindahan: {¢,(@,)| dan y; adalah mode normal
non-linier dari mode ke-j dan perpindahan dalam
koordinat modal ke-j.

Mode Normal Non-Linier. Untuk sistem
banyak derajat kebebasan non-linier dengan
redaman yang ringan, solusi stasioner pada kondisi
resonansi dapat dianggap sebagai sebuah mode
normal non-linier. Oleh karena itu, sistem banyak
derajat kebebasan dalam Persamaan (6) direduksi
menjadi sistem  satu derajat kebebasan yang
digambarkan oleh koordinat-koordinat normal
resonansi tunggal. Persamaan (7) dalam koordinat
normal menjadi

k=16, J,® (®)

dengan {$j(Qj)} adalah mode normal non-linier dari

mode ke-j dan Y; adalah koordinat modal dari
mode ke-j dalam basis koordinat relatif. Jika gaya
eksitasi yang bekerja adalah periodik, maka respon
stasioner pada umumnya akan berbentuk periodik
dengan frekuensi yang sama dengan frekuensi
eksitasi €2, maka pada Q@=o; solusi mode normal
tunggal dari Persamaan (8) menjadi persamaan (9)
di mana Q; adalah amplitudo-modal.

u®3=1{8,Q,)] Qi.cos &t ©)

Asumsi mode tunggal (single mode) pada
kondisi-kondisi  resonansi dan asumsi  solusi
periodik dalam persoalan non-linier dipakai dan
diterima secara luas bahkan untuk sistem-sistem
yang mempunyai tingkat kenon-linieran yang kuat.

Frekuensi natural non-linier ®j dan mode

normal non-linier ¢; dapat diperoleh dengan

memasukkan Persamaan (9) ke dalam Persamaan
(6) dan mengabaikan semua suku-suku harmonik
yang lebih tinggi:

[D(Qi)]{—d;i}:xi['\-;l]{—q;i} (10)
di mana

p@))-[)]:[%uc))] (1)
dan [k.@| adalah matriks kekakuan non-linier

yang merupakan fungsi dari amplitudo-modal Q; .

Persoalan nilai-eigen pada Persamaan (10)
bukanlah suatu bentuk standar linier, oleh karena
itu, secara umum tidak dapat dipecahkan melalui
solusi nilai-eigen standar. Persoalan nilai-eigen
non-linier pada Persamaan (10). hanya dapat
dipecahkan melalui prosedur-prosedur numerik.
Ada banyak prosedur-prosedur numerik untuk
memecahkan masalah nilai-eigen non-linier. Yang
akan dipakai pada studi ini adalah prosedur
Newton-Raphson.

Persamaan (10) dapat disusun kembali menjadi
bentuk berikut ini

(['Z]Jf['znl(Qi)]‘Xj['g']){%}:{9@1@)} 12)

n derajat kebebasan dari Persamaan (12)
memiliki n+1 elemen-elemen nilai-eigen dan
vektor-eigen yang tidak diketahui, sehingga
Persamaan (12) tidak dapat digunakan untuk
memperoleh n+1 yang tidak diketahui. Variabel-
variabel yang tidak diketahui harus disusun kembali
agar Persamaan (12) dapat dipecahkan. Ini dapat
diselesaikan dengan mengeset salah satu elemen
dari vektor-eigen dengan nilai satu. Akhirnya, n
variabel yang tidak diketahui dari Persamaan (12)
dapat diperoleh lewat prosedur Newton-Raphson di
bawah ini:

{s}={s}-lole; 8, )1 ol 3, (13)
di mana
$1j=1
sT=(%, 3. )
ol - L)
dgd; ~-, ~ 1~ (14)
R O 1 R A

(), - bl [R]iNM—xi[mm

dengan p =2, 3,..., n dan s adalah vektor dari n
tak diketahui dari 1 nilai-eigen dan n-1 elemen
vektor- eigen.

Menggunakan nilai sebelumnya dari amplitudo-
modal q;, prosedur iteratif ini akan konvergen

secara cepat. Nilai-nilai frekuensi natural linier dan
mode normal linier dapat digunakan sebagai nilai-
nilai awal.

Frekuensi-frekuensi  natural non-linier dan
mode-mode normal non-linier dari sistem non-linier
diperoleh sebagai fungsi dari amplitudo-modal g,
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dengan peningkatan amplitudo-modal secara
progresif:
_2 -
5,°(Q;)=7,
_ - (15)
{¢1(Qi)}:[5]{¢j}
di mana [B] adalah matriks transformasi

koordinat, {&-(Q,—)} dan {&,—(Q,—)} adalah mode
normal non-linier dalam basis koordinat absolut
dan dalam basis koordinat relatif.

Analisis modal non-linier. Mengambil analogi
untuk kasus linier, maka solusi persamaan gerak
non-linier dapat didekati dengan kombinasi linier

dari n buah mode-mode normal non-linier $,-(Q,—)
dan n buah amplitudo-modal o :

{uo}= > {8;@) -0, cos at (16)
j=1

di mana {U(t)} adalah vektor perpindahan kompleks,

[+, dan O adalah mode normal non-linier dan

amplitudo modal non-linier pada mode-j yang
didapat mode per mode, dengan menggunakan
prosedur mode non-linier tunggal yang disebutkan
pada sub-bab sebelum ini.

Dengan memasukkan Persamaan (16) ke dalam
persamaan dinamik sistem non-linier Persamaan
(3), dan dengan mengasumsikan bahwa solusinya
terkait secara ringan, Persamaan (3) yang telah
ditransformasi menjadi

—0%M,Q; +iQE;Q; +k,Q; + f,(Q)) = B, (17)
di mana

7y =@ | M@
& -{n@flclls )]

kj = {$1(QJ’)P[K] {%,-(Q,—)} (18)
@) -1 ] 1@ =180 [ [kal{o;@p]
5= {;@] (P}
di mana [K,] adalah bagian kekakuan non-linier
dari sistem.

Amplitudo-modal Q; untuk setiap mode ke-j
dari Persamaan (17) dapat diberikan oleh

{&,— (0, )}r {P}

7 (61(0,)-0°)+

Qj= (19)

di mana kekakuan linier dan non-linier dari sistem
dalam basis modal dapat didekati dengan

kjQ; + FJ(QJ):E‘;E?(Q]) (20)

Setelah amplitude-modal Q; diperolen maka
solusi persamaan non-linier dapat diperoleh dengan
menggunakan Persamaan (16). Dengan n adalah
jumlah mode yang diperhitungkan.

Studi Kasus

Studi kasus. Pada kasus ini akan dibahas
karakteristik dan respon dinamik struktur pelat
dudukan motor dengan kekakuan non liner lokal
pada ujung-unjung pelat.

Data dan ukuran pelat dapat dilihat pada Tabel 1.

Tabel 1 Data dan ukuran pelat

No. Data-data Nilai
1 Modulus elastisitas beton 2x10° kg/m?
2 Berat jenis beton 2400 kg/m®
3 Poisson ratio beton 0,22
4 Ukuran pelat pondasi 160 x 120cm
5  Tebal pelat pondasi 10cm

Penyusunan dilakukan terhadap elemen dengan
perincian sebagai berikut :
e Jumlah elemen = 12
o Jumlah titik simpul tiap elemen = 4
¢ Jumlah derajat kebebasan tiap titik simpul = 3
¢ Jumlah total titik simpul dalam sistem = 60

y
4 1
i 1's i
| .
6 10 3
| 11
X
9 12
e
a
v

Gambar 3 Satu elemen dengan 4 titik simpul dan 12
derajat kebebasan

Penyederhanaan model pelat lentur dengan 12
elemen, 20 titik, dan kekakuan non-linier pada
ujung-ujung pelat yaitu titik 1, 5, 16, dan 20 pada
arah z dapat dilihat seperti pada Gambar 4. Harga
kekakuan non-linier pegas adalah k=6250 N/m dan
0=200N/m?. Koefisien damping matriks C adalah
0,001 dari nilai kekakuan matriks K.
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Gambar 4 Model pelat lentur dengan
kekakuan non-linier pada ujung-ujung pelat
menggunakan elemen hingga

Model pelat lentur dengan derajat kebebasan
untuk masing-masing titik diurutkan sesuai Gambar
5.

46 49 52 55 58

Sl &
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aE ﬁ»f%i»

Gambar 5 Model pelat lentur dengan derajat
kebebasan

Hasil dan Pembahasan

Hasil Kkarakterisitik sistem dinamik non-linier
dapat dilihat pada Gambar 6. Dari grafik tersebut
dapat dilihat bahwa frekuensi natural berubah
terhadap amplitudo.

0.8 f }_/ . i
0.7 | ’;“‘. (
ol | w |

0.5 |

Amplitudo x

0.4

03

0.2

0.1

Frekuensi natural Q (rad/s)

Gambar 6 Frekuensi natural (rad/s) sistem non-linier
fungsi dari amplitudo simpangan

Pada Gambar 7 merupakan gambar respon
fungsi frekuensi dari titik 1 arah z pada frekuensi
pertamanya dengan amplitudo gaya 10 dan 50
newton. Dari gambar ini terlihat bahwa puncak
respon yang merupakan pada daerah frekuensi
naturalnya berpindah ke arah kanan dengan
membesarnya amplitude gaya F yang arahnya
mengikuti sesuai dengan frekuensi natural pada
Gambar 6.
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Gambar 7 Respon dinamik sistem non-linier fungsi
frekuensi dari titik 1 arah z pada frekuensi
pertamanya dengan amplitudo gaya 10 dan 50
Newton

Kesimpulan

Studi mengenai sistem dinamik non-linier telah
dilakukan untuk model pelat beton dengan
menggunakan pegas non-linier pada keempat
ujung-ujungnya. Metode analisis modal non-linier
dapat digunakan dengan mudah untuk sistem
dinamik  non-linier dengan banyak derajat
kebebasan. Hasil perhitungan menunjukan bahwa
penggunaan analisis modal non-linier memerlukan
waktu perhitungan yang jauh lebih singkat
dibandingkan metode-metode lainnya. Penggunaan
beberapa mode non-linier saja di sekitar respon
dinamik yang ingin diketahui dapat mengurangi
waktu perhitungan secara signifikan.
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