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Abstrak 
 

Suatu struktur dengan rangka batang yang bervariasi secara geometri atau material sangat banyak digunakan 

dalam berbagai aplikasi teknik di lapangan. Salah satu kasus khusus yang melibatkan kondisi di atas adalah suatu 

kolom bertingkat dua segmen yang dibebani oleh beban aksial yang berbeda pada setiap segmennya. Kondisi ini 

secara praktek dapat ditemui pada kolom struktur bangunan bertingkat yang menahan beban-beban lantai di 

atasnya. Dikarenakan baik harga beban aksial maupun kekakuan yang berbeda disepanjang batang kolom, 

menjadikan kasus ini akan lebih sulit dibandingkan kasus kolom berpenampang seragam. Proses penghitungan 

beban buckling untuk kasus kolom bertingkat seperti tidak akan pernah bisa dilakukan dengan mudah karena akan 

dihadapkan pada persamaan matematika yang cukup rumit. Makalah ini mencoba memberikan suatu harga 

pendekatan bagi kekuatan buckling suatu struktur kolom bertingkat dua segmen melalui pendekatan numerik. 

Untuk itu sebuah program komputasi berbasiskan konsep metode elemen hingga yang memperhitungkan 

ketidaklinearan geometri dan material dikembangkan untuk bisa menghitung kekuatan buckling dari berbagai 

model struktur kolom bertingkat dua segmen. Untuk menguji keakuratan hasil program komputasi, kekuatan 

buckling elastik kolom yang diperoleh nantinya akan diverifikasi oleh suatu formula analitik yang diturunkan 

dengan konsep elastis mekanika benda padat. Hasil akhir yang berikan adalah diperolehnya suatu persamaan 

pendekatan untuk menghitung kekuatan kritis buckling kolom bertingkat dua segmen untuk berbagai variasi 

geometri dan pembebanan aksial. Diharapkan nantinya persamaan pendekatan ini dapat menjadi persamaan 

praktis yang bisa direkomendasikan dan digunakan langsung oleh praktisi dalam perancangan struktur kolom 

bertingkat dua segmen dengan beban aksial yang berbeda, untuk berbagai aplikasi di lapangan. 
 

Keywords: kolom bertingkat, dua segmen, beban aksial yang berbeda, beban buckling, faktor reduksi. 

 

 
Pendahuluan 

 

Batang-batang dengan penampang yang bervariasi 

sangat banyak digunakan dalam praktek-praktek 

rekayasa struktur di lapangan karena penggunaan 

elemen seperti ini dalam suatu sistem struktur 

mekanik akan dapat mereduksi berat dari sistem 

secara keseluruhan sehingga akhirnya mampu 

menurunkan biaya konstruksi secara signifikan. 

Sebuah batang yang tidak seragam secara geometri, 

variasi dari penampang dapat berupa perubahan 

secara kontinu disepanjang batang seperti yang 

ditunjukkan oleh batang-batang berbentuk taper, atau 

berupa perubahan yang terjadi secara langsung pada 

suatu titik pada batang seperti yang ditunjukkan oleh 

batang-batang dengan segmen bertingkat. Sebagai 

contoh, suatu desain rangka atap yang ekonomis 

dapat dicapai dengan menggunakan frame baja yang 

berbentuk taper (steel tapered gabled frame). Contoh 

lain adalah kolom struktur crane yang biasa 

digunakan dalam konstruksi bangunan tinggi 

kebanyakan sekarang didesain dalam bentuk segmen 

bertingkat. Kemudian, sistem permesinan untuk 

mengangkat benda-benda yang sangat berat 

seringkali menggunakan crane yang bisa bergerak di 

sepanjang struktur girder. Struktur girder ini 

biasanya yang ditopang oleh kolom taper ataupun 

kolom dengan segmen bertingkat. Dari sisi 

pembebanannya, kolom tersebut disamping 

menerima beban aksial pada ujung paling atas dari 

berat sistem atap, juga akan menahan beban pada sisi 

bagian dalam dimana crane dipasang. Contoh lain 

yang paling banyak ditemukan di lapangan adalah 

kolom dengan segmen bertingkat yang digunakan 

pada struktur bangunan bertingkat, dimana kolom 

tersebut akan dibebani secara aksial oleh beban lantai 

bangunan bertingkat tersebut.  

Untuk kolom dengan segmen bertingkat, baik beban 

aksial maupun kekakuan batang tidak akan konstan 

disepanjang batang kolom, oleh karena itu analisa 

kestabilan kolom dengan segmen bertingkat ini akan 

lebih rumit dibandingkan dengan kolom berbatang 
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seragam. Untuk mendapatkan kekuatan bucklingnya 

secara teoritik, analisa terpisah musti dilakukan untuk 

setiap segmen. Persamaan karakteristik untuk 

sepanjang kolom didapatkan dari hubungan 

kekontinuan antar segmen dan jenis kondisi dari 

ujung-ujung kolom itu sendiri. Kasus yang paling 

sederhana adalah kolom bertingkat dengan dua 

segmen dengan kondisi jepit pada ujung bawah dan 

bebas di ujung atasnya. Analisis elastik berdasarkan 

konsep mekanika  untuk kasus ini hanya melibatkan 

dua buah fungsi lendutan; yaitu pada titik perubahan 

antar segmen dan ujung paling atas kolom. Kemudian 

solusi nontrivial diperoleh dari determinan kedua 

fungsi tersebut yang sebelumnya telah diubah 

menjadi matriks 2×2. Hanya saja analisa analitik 

yang dilakukan dibatasi oleh kondisi ketebalan kolom 

yang seragam pada setiap segmen dan material yang 

diasumsikan elastik. Jika ketebalan kolom berbeda 

antar segmen serta pengaruh ketidaklinearan material 

juga diperhitungkan dalam analisa, proses 

penghitungan kekuatan buckling akan semakin rumit 

jika menggunakan pendekatan teoritik berbasiskan 

konsep mekanika benda padat. Untuk itu, makalah ini 

akan menggunakan program komputasi berbasiskan 

metode elemen hingga yang telah memperhitungkan 

pengaruh ketidaklinearan geometri dan material.  

Untuk menguji keakuratan program yang 

dikembangkan, kekuatan buckling elastik kolom yang 

diperoleh nantinya akan diverifikasi oleh suatu 

formula analitik yang diturunkan dengan konsep 

elastis mekanika benda padat.  

Walaupun hanya terbatas untuk jenis kolom 

bertingkat dua segmen, makalah ini memberikan 

suatu persamaan pendekatan untuk menghitung 

kekuatan kritis kolom bertingkat dua segmen dengan 

ketebalan segmen yang berbeda satu sama lainnya. 

Persamaan pendekatan ini diberikan untuk beberapa 

kasus tertentu yang diperoleh melalui analisa 

numerik. Diharapkan persamaan pendekatan ini, bisa 

direkomendasikan dan digunakan langsung oleh 

praktisi dalam perancangan struktur kolom bertingkat 

dua segmen dengan beban aksial yang berbeda untuk 

berbagai aplikasi di lapangan.     

 

Persamaan Analitik untuk Kekuatan Buckling 

Kolom Bertingkat Dua Segmen 
 

Sebuah model kolom bertingkat dua segmen dengan 

tumpuan jepit di ujung bawah serta bebas di ujung 

atas, diperlihatkan oleh Gbr. 1. Segmen 1 memiliki 

lebar penampang b1, momen inersia I1 dan panjang 

segmen L1. Segmen 2 memiliki lebar penampang b2, 

momen inersia I2 dan panjang segmen L2. Dua buah 

beban aksial bekerja pada kolom, dimana beban c.P 

bekerja pada ujung atas segmen 2 dan beban d.P 

bekerja pada titik perubahan segmen. Beban total 

yang bekerja diasumsikan sebesar (c+d)∙P. 

 

 
Gambar.1 Kolom Bertingkat Dua Segmen  

 

Diagram benda bebas (DBB) dari untuk tiap segmen 

diberikan oleh Gbr.2 berikut ini. 

 

 
(a)                 (b) 

 

Gambar 2. DBB tiap segmen kolom bertingkat 

(a). Segmen 1 (b). Segmen 2 

 

Dari Gambar 2a dan 2b diperoleh persamaan 

differensial lendutan sebagai berikut: 
" 2

1 1 1 1 1y k y M EI    ... (1) 

" 2

2 2 2 2 2y k y M EI    ... (2) 

dimana 
2

1 1( ).k c d P EI   ... (3) 

2

2 2.k c P EI  ... (4) 

 

 Solusi umum untuk harga 1y dan 2y

diberikan oleh: 
2

1 1 1 1 1 1 1 1sin( ) cos( )y A k x B k x M EI k    ... (5) 

2

2 2 2 2 2 2 2 2sin( ) cos( )y C k x D k x M EI k    ... (6) 

 

Syarat batas pada titik ① dan titik ② diberikan oleh 
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M2=c.P(∆3-∆2) 
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1 1( 0) 0;y x    

'

1 1( 0) 0;y x    

1 1 1 2 2 2( ) ( 0) ;y x L y x     

' '

1 1 1 2 2( ) ( 0)y x L y x   , 

sehingga dari Pers.(5) dan (6) diperoleh harga 

0;A    

2

1 1 1 ;B M EI k   

   1 1 1 1 1 2sin( ) ;C M k L EI k k  

   

2 2

1 1 1 2 2 2 2

2

1 1 1 1 1

( ) ( )

cos( )

D M EI k M EI k

M k L EI k

   
 

dimana 

 1 2 3. .M P d c    dan  2 3 2.M c P   . 

 

Persamaan defleksi pada titik ② memberikan: 

1 1 1 2( ) ;y x L    ... (7) 

dan pada titik ③ memberikan:  

2 2 2 3 2( )y x L     ... (8) 

 

Jika Pers. (7) dan (8) ini diubah dalam bentuk matriks 

akan diperoleh: 

211 12

321 22

0

0

h h

h h

    
          

 ... (9) 

 

Kemudian jika parameter-parameter umum yang 

terkait dengan geometri umum kolom seperti: 

1 2; (1 )L b L L b L      

1 2EI a EI   

  2

2 2P EI c k   

1 2. ( )k k c d ac   

diinputkan ke dalam Pers. (9), maka akan diperoleh: 

 

2

11

cos 1

1

c d
d k bL

ac
h

c d

  
    

    


 

 

2

12

cos 1
c d

k bL c
ac

h
c d

  
     

   


 

 

 

 

 

2 2

21

2

2 2

cos (1 ) cos

cos (1 )

sin sin (1 )

c d
k b L d k bL

ac
h

c d

k b L d

c d

c d
d k bL k b L

ac

c d
ca

ac

 
  

   







 
 

 



 

 

 

 
 

 

2 2

22

2

2

2 2

sin sin (1 )

cos (1 )
cos (1 )

cos (1 ) cos

c d
k bL k b L

ac
h

c d
a

ac

k b L c
k b L

c d

c d
k b L k bL

ac

c d

 
 

   



  



 
  

 



 

 

Solusi nontrivial dari Pers.(9) diperoleh dengan 

 

11 12

21 22

det 0
h h

h h
  

 

sehingga akan diperoleh: 

 2 2cos ( 1 ) cos
c d c d

k b L k bL a
ac ac

c d
a

ac

  
   

  


  

 2 2sin ( 1 ) sin

0

c d
k b L k bL

ac

c d
a

ac

 
   

  


 ... (10) 

 

Dari Pers.(10) ini, kekuatan buckling dari beberapa 

model dasar (lihat Gbr 3) dari kolom bertingkat dua 

segmen yang dibebani dengan beban aksial pada 

setiap segmennya dapat diperoleh sebagai berikut: 
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Gambar 3. Kasus-kasus pembebanan pada kolom bertingkat 

 

Untuk kasus 1 dan 2 diasumsikan momen inersia 

kedua segmen berharga sama, sedangkan untuk kasus 

3 sampai 6 diasumsikan momen inersia segmen 1 

delapan kali lebih besar dari segmen 2. Kemudian, 

dengan menggunakan Pers.(10), akan diperoleh harga 

beban kritis dari struktur kolom untuk masing-masing 

kasus sebagai berikut: 

Kasus 1:  2

12,467crP EI L  ... (11) 

Kasus 2:  2

12,067crP EI L  ... (12) 

Kasus 3:  2

10,959crP EI L  ... (13) 

Kasus 4:  2

10,938crP EI L  ... (14) 

Untuk kasus 5 dan 6, gaya aksial yang bekerja di 

segmen 1 diasumsikan dua kali lebih besar dari 

segmen 2. Sedangkan, khusus untuk kasus 6 

perbandingan 1 2/L L diasumsikan sama dengan 2, 

sehingga beban kritis kolom menjadi: 

Kasus 5:  2

10,914crP EI L  ... (15) 

Kasus 6:  2

11,172crP EI L  ... (16) 

 

Analisa Numerik Penghitungan Kekuatan 

Buckling Kolom Bertingkat Dua Segmen 

 

Proses penghitungan kekuatan kritis struktur kolom 

ini dihitung secara numerik dengan memanfaatkan 

program komputasi in-house [Kato, et.al (2005), 

Satria, et.al (2007, 2011, 2012)] berbasiskan metode 

elemen hingga yang memperhitungkan 

ketidaklinearan geometri dan material. Untuk 

pemodelan, struktur kolom dibuat dengan 

menggunakan elemen solid hexahedron 20 nodal. 

Ketidaklinearan geometri dihitung berdasarkan 

Updated Langrangian Jaumann dengan 

mempertimbangkan perpindahan dan rotasi yang 

besar. Ketidaklinearan material dihitung berdasarkan 

teori kriteria luluh Von Misses, Associated Flow Rule, 

dan Hardening Rule untuk material baja karbon 

rendah. Sedangkan solusi numerik untuk persamaan 

kesetimbangan nonlinear diselesaikan dengan metoda 

pengontrolan perpindahan (displacement control 

method). 
 

Model Kolom Bertingkat Dua Segmen 

Ada dua jenis kolom bertingkat dua segmen yang 

digunakan. Model pertama, diberikan oleh Gbr.4a, 

memperlihatkan lebar penampang segmen 2 

berkurang dari b1 menjadi b2 dimana b1=2b2, 

sedangkan ketebalannya tetap (h1=h2). Model ini 

ditampilkan dengan tujuan utama untuk melihat 

akurasi hasil dari program komputasi yang 

dikembangkan, melalui perbandingan hasil yang 

diberikan dengan hasil yang diperoleh melalui analisa 

analitik (Pers.(13) sampai Pers.(16)). Model kedua, 

diberikan oleh Gbr.4b, memperlihatkan pengurangan 

penampang kolom dilakukan pada kedua sisi 

penampang, baik lebar maupun ketebalan, atau 

b1=2b2 dan h1=2h2. Untuk model ini, hasil yang 

diberikan hanya dari analisa numerik saja, karena 

proses penurunan persamaan analitiknya yang cukup 

sulit.  

 

 
(a)           (b) 

 

Gambar 4. Kolom (a).Model Pertama, (b).Model 
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 Tabel 2. Kolom dalam Variasi Geometri dan Jenis Kasus 

KASUS 
L 

(mm) 

L1 

(mm) 

Segmen-1 Segmen-2 PKRITIS 

NUMERIK 

(kN) 

PKRITIS 

ANALITIK 

(kN) 
KASUS 

Segmen-1 Segmen-2 PKRITIS 

NUMERIK 

(kN) 

PKRITIS 

ANALITIK 

(kN) 
b1 

(mm) 

h1 

(mm) 

P1 

(N) 

b2 

(mm) 

h2 

(mm) 

P2 

(N) 

b1 

(mm) 

h1 

(mm) 

P1 

(N) 

b2 

(mm) 

h2 

(mm) 

P2 

(N) 

 

KOLOM PENAMPANG SERAGAM 

 

K
A

S
U

S
-1

 M01 1000 500 100 100 1000 100 100 0 Yield 4317,2 

K
A

S
U

S
-2

 M01 100 100 1000 100 100 1000 Yield 3617,2 
M02 2000 1000 100 100 1000 100 100 0 1019,1 1079,3 M02 100 100 1000 100 100 1000 891,4 904,4 
M03 3000 1500 100 100 1000 100 100 0 460,6 479,7 M03 100 100 1000 100 100 1000 400,47 401,9 
M04 4000 2000 100 100 1000 100 100 0 262,3 269,8 M04 100 100 1000 100 100 1000 226,4 226,1 
M05 5000 2500 100 100 1000 100 100 0 169,1 172,7 M05 100 100 1000 100 100 1000 142,6 144,7 

 

KOLOM BERTINGKAT MODEL PERTAMA 

 

 

KOLOM BERTINGKAT MODEL KEDUA 

K
A

S
U

S
-3

 M01 1000 500 100 100 1000 50 100 0 Yield 1678,2 

K
A

S
U

S
-3

 M01 100 100 1000 50 50 0 Yield  
M02 2000 1000 100 100 1000 50 100 0 417,3 419,6 M02 100 100 1000 50 50 0 248,1  
M03 3000 1500 100 100 1000 50 100 0 178,4 186,5 M03 100 100 1000 50 50 0 112,7  
M04 4000 2000 100 100 1000 50 100 0 105,2 104,9 M04 100 100 1000 50 50 0 64,7  
M05 5000 2500 100 100 1000 50 100 0 61,02 67,1 M05 100 100 1000 50 50 0 42,2  

K
A

S
U

S
-4

 M01 1000 500 100 100 1000 50 100 1000 Yield 1641,4 

K
A

S
U

S
-4

 M01 100 100 1000 50 50 1000 Yield  
M02 2000 1000 100 100 1000 50 100 1000 405,8 410,4 M02 100 100 1000 50 50 1000 245,6  
M03 3000 1500 100 100 1000 50 100 1000 173,4 182,4 M03 100 100 1000 50 50 1000 110,4  
M04 4000 2000 100 100 1000 50 100 1000 100,7 102,6 M04 100 100 1000 50 50 1000 63,2  
M05 5000 2500 100 100 1000 50 100 1000 57,7 65,7 M05 100 100 1000 50 50 1000 40,5  

K
A

S
U

S
-5

 M01 1000 500 100 100 1000 50 100 2000 Yield 1599,5 

K
A

S
U

S
-5

 M01 100 100 1000 50 50 2000 Yield  
M02 2000 1000 100 100 1000 50 100 2000 396,6 399,9 M02 100 100 1000 50 50 2000 213,7  
M03 3000 1500 100 100 1000 50 100 2000 170,6 177,7 M03 100 100 1000 50 50 2000 109,3  
M04 4000 2000 100 100 1000 50 100 2000 96,3 99,9 M04 100 100 1000 50 50 2000 62,0  
M05 5000 2500 100 100 1000 50 100 2000 55,2 64,0 M05 100 100 1000 50 50 2000 39,3  

K
A

S
U

S
-6

 M01 1000 667 100 100 1000 50 100 2000 Yield 2051,0 

K
A

S
U

S
-6

 M01 100 100 1000 50 50 2000 Yield  
M02 2000 1333 100 100 1000 50 100 2000 516,3 512,7 M02 100 100 1000 50 50 2000 263,6  
M03 3000 2000 100 100 1000 50 100 2000 216,1 227,9 M03 100 100 1000 50 50 2000 177,3  
M04 4000 2666 100 100 1000 50 100 2000 125,1 128,2 M04 100 100 1000 50 50 2000 106,6  
M05 5000 3333 100 100 1000 50 100 2000 80,1 82,1 M05 100 100 1000 50 50 2000 67,1  
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Pcr, num (N) 

x 

(mm) 

Kasus 3:  

L=2000, Kolom 

Kasus 3: 

L=2000, Kolom 

Pcr, num 

Pcr, num 

Sifat Geometri dan Pembebanan 

Analisa numerik akan dilakukan terhadap kedua 

model kolom di atas (lihat Gbr.4) untuk 6 kasus yang 

berbeda (lihat Gbr.3). Setiap kasus akan dibagi lagi 

dalam berbagai variasi panjang kolom. Geometri 

umum kolom untuk setiap kasus dijelaskan dalam 

Tabel 1.  

 

Sifat Material 

Seluruh model kolom yang dianalisa terbuat dari 

material yang sama seperti yang dijelaskan Tabel 2. 

 

Tabel 2. Sifat Material 
Modulus Elastisitas (E) – (N/mm

2
)   210000 

Rasio Poisson () 0.3 

Tegangan Luluh (y) – (N/mm
2
) 270 

Model Tegangan-Regangan Bi-Linear 

Kriteria Luluh Von-Misses 

Flow Rule Associated  

Hardening Rule Isotropic 

Hardening Parameter E/100 

 

Hasil dan Pembahasan 

 

Penentuan Kekuatan Kritis Buckling Kolom 

Kekuatan kritis buckling kolom ditentukan dari grafik 

hubungan beban dan perpindahan (P vs x) yang 

diperoleh lewat analisa numerik. Sebagai contoh 

Gbr.5 memperlihatkan 2 buah grafik P vs x untuk  

kasus 3 pada kolom bertingkat model pertama dan 

kedua dengan geometri seperti yang diberikan oleh 

model M02 (lihat Tabel 1). 

 

 

 

 

 

 

 

 

 

 

 

Gambar 5. Penentuan kekuatan Kritis Buckling 

Kolom secara Numerik 

 

Dari Gbr.5, diketahui bahwa kekuatan kritis buckling 

untuk tipe Kolom Pertama adalah sekitar Pcr=410 kN 

dan untuk tipe Kolom Kedua sebesar Pcr=245 kN. 

Prosedur ini juga berlaku untuk semua model.  

 

Kolom dengan Penampang Seragam 

Kasus 1 pada Tabel 1 memperlihatkan harga kekuatan 

kritis kolom berpenampang seragam dengan beban 

aksial P=1000 N diberikan hanya pada ujung kolom 

bagian atas. Kekuatan kritis numerik yang diperoleh 

umumnya mendekati harga yang diberikan persamaan 

analitik (Pers.11). Sebagai contoh, untuk kolom 

dengan geometri M02 dan M03, kekuatan kritis 

melalui pendekatan numerik adalah Pcr, numerik=1019,1 

kN dan 460,6 kN. Harga ini mendekati harga yang 

diberikan Pers. (11), yaitu Pcr, analitik=1079,3 kN untuk 

kolom M02 dan 479,7 untuk M03. Terdapat 

kesalahan sekitar 5,5% dan 3,6% berturut-turut untuk 

kolom M02 dan M03. Kesalahan ini disebabkan oleh 

karena kegagalan buckling terjadi ketika struktur 

dalam kondisi elastik, sehingga akan timbul sedikit 

kesulitan dalam menentukan kapan struktur tersebut 

mulai mengalami kegagalan buckling untuk pertama 

kalinya (lihat Gbr.5). Khusus untuk tipe kolom M01, 

kegagalan yang terjadi adalah kegagalan karena 

proses peluluhan. Hal ini disebabkan karena kolom 

M01 memiliki rasio kelangsingan yang rendah. 

 
Selanjutnya, kasus 2 pada Tabel 1 memperlihatkan 

harga kekuatan kritis kolom berpenampang seragam 

dengan beban aksial P=1000 N diberikan pada 

masing-masing segmen. Seperti halnya kasus 1, 

kekuatan kritis numerik yang diperoleh umumnya 

mendekati harga yang diberikan persamaan analitik 

yang diberikan oleh Pers.(12) dengan rasio kesalahan 

rata-rata dibawah 5%. Jika dibandingkan dengan 

Kasus 1, harga kekuatan buckling yang diperoleh 

sedikit lebih rendah.  

.  

Kolom Bertingkat Model Pertama 

Tabel 1 juga memperlihatkan harga-harga kekuatan 

kritis buckling kolom bertingkat dua segmen untuk 

tipe model pertama, seperti yang diberikan oleh 

kasus-kasus tiga sampai enam.  

 

Kasus 3 memperlihatkan kolom bertingkat dua 

segmen dengan beban aksial P=1000 N hanya pada 

ujung atasnya saja. Hasil yang diperoleh 

memperlihatkan bahwa harga kekuatan kritis yang 

diberikan melalui analisa numerik dapat mendekati 

harga kekuatan kritis yang diberikan oleh persamaan 

analitik pada Pers.(13). Kondisi yang sama juga 

terlihat untuk kasus 4, 5 dan 6, dimana hasil kekuatan 

kritis buckling yang diberikan oleh Pers.(14), 

Pers.(15) dan Pers.(16) dapat didekati oleh analisa 

numerik. 

 

Hasil ini menunjukkan bahwa program komputasi 

berbasiskan metode elemen hingga yang 

dikembangkan untuk menghitung kekuatan kritis 

buckling kolom bertingkat dua segmen memberikan 

akurasi penghitungan yang cukup baik dengan rata-

rata kesalahan kurang dari 5%. 

 

 

Kolom Bertingkat Model Kedua  

Tabel 1 memperlihatkan harga-harga kekuatan kritis 

buckling kolom bertingkat dua segmen untuk tipe 
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model kedua untuk empat buah kasus, yaitu kasus 

satu sampai kasus enam.  

 

Kasus 3: 

Kasus 3 memperlihatkan kolom bertingkat dengan 

beban aksial P=1000 N hanya pada ujung atasnya 

saja. Perubahan luas penampang digambarkan dengan 

pengurangan penampang segmen 1 dari sebesar 

100×100mm berkurang menjadi 50×50mm pada 

segmen 2. Hasil yang diperoleh memperlihatkan 

bahwa harga kekuatan kritis buckling yang diberikan 

melalui analisa numerik adalah Pcr, numerik=248,1 kN 

untuk tipe M02, 112,7 kN untuk tipe M03, 64,7 kN 

untuk tipe M04 dan 42,2 kN untuk tipe M05. Jika 

harga-harga ini diperbandingkan dengan harga 

kekuatan kritis numerik kolom bertingkat tipe model 

pertama, maka akan diperoleh rata-rata reduksi 

sebesar: 

, , _

, , _

0,63
cr numerik Model Kedua

cr numerik Model Pertama rata rata

P

P




 
  
 
 

 

 ... (17) 

Sehingga solusi praktis untuk kasus tiga ini dapat 

diberikan dengan memodifikasi Pers.(13) menjadi 

Pers.(18) sebagai berikut: 

   2 2

1 10,959 0,63 0,959crP EI L EI L      

 2

10,604crP EI L  ... (18) 

  

Kasus 4: 

Kasus 4 memperlihatkan kolom bertingkat dengan 

beban aksial P=1000 N pada setiap segmennya. 

Perubahan luas penampang digambarkan dengan 

pengurangan penampang segmen 1 dari sebesar 

100×100mm berkurang menjadi 50×50mm pada 

segmen 2. Hasil yang diperoleh memperlihatkan 

bahwa harga kekuatan kritis yang diberikan melalui 

analisa numerik adalah Pcr, numerik=245,6 kN untuk tipe 

M02, 110,4 kN untuk tipe M03, 63,2 kN untuk tipe 

M04 dan 40,5 kN untuk tipe M05. Jika harga-harga 

ini diperbandingkan dengan harga kekuatan kritis 

numerik kolom bertingkat tipe model pertama, maka 

dengan Pers.(17) akan diperoleh rata-rata reduksi 

sebesar 0,64  . Sehingga solusi praktis untuk 

kasus lima ini dapat diberikan dengan memodifikasi 

Pers.(14) menjadi Pers.(19) sebagai berikut: 

   2 2

1 10,938 0,64 0,938crP EI L EI L      

 2

10,591crP EI L  ... (19) 

 

Kasus 5: 

Kasus 5 memperlihatkan kolom bertingkat dengan 

beban aksial P1=1000 N pada ujung segmen 1 dan 

P2=2000 N pada ujung segmen 2. Perubahan luas 

penampang digambarkan dengan pengurangan 

penampang segmen 1 dari sebesar 100×100mm 

berkurang menjadi 50×50mm pada segmen 2. Hasil 

yang diperoleh memperlihatkan bahwa harga 

kekuatan kritis yang diberikan melalui analisa 

numerik adalah Pcr, numerik=213,7 kN untuk tipe M02, 

109,3 kN untuk tipe M03, 62,0 kN untuk tipe M04 

dan 39,3 kN untuk tipe M05. Jika harga-harga ini 

diperbandingkan dengan harga kekuatan kritis 

numerik kolom bertingkat tipe model pertama, maka 

dengan Pers.(17) akan diperoleh rata-rata reduksinya 

sebesar 0,63  . Solusi praktis untuk kasus lima ini 

dapat diberikan dengan memodifikasi Pers.(15) 

menjadi Pers.(20) sebagai berikut: 

   2 2

1 10,914 0,63 0,914crP EI L EI L      

 2

10,576crP EI L  ... (20) 

 

Kasus 6: 

Kasus 6 memperlihatkan kolom bertingkat dengan 

beban aksial P1=1000 N pada ujung segmen 1 dan 

P2=2000 N pada ujung segmen 2. Perubahan luas 

penampang digambarkan dengan pengurangan 

penampang segmen 1 dari sebesar 100×100mm 

berkurang menjadi 50×50mm pada segmen 2. 

Perbedaan dengan kasus 4 adalah pada perbandingan 

harga L1/L2 yang naik dari 1,0 menjadi 2,0. Hasil 

yang diperoleh memperlihatkan bahwa harga 

kekuatan kritis yang diberikan melalui analisa 

numerik adalah Pcr, numerik=263,6 kN untuk tipe M02, 

177,3 kN untuk tipe M03, 106,6 kN untuk tipe M04 

dan 67,1 kN untuk tipe M05. Jika harga-harga ini 

diperbandingkan dengan harga kekuatan kritis 

numerik kolom bertingkat tipe model pertama, maka 

dengan Pers.(17) akan diperoleh rata-rata reduksinya 

sebesar 0,76  . Sehingga solusi praktis untuk 

kasus enam ini dapat diberikan dengan memodifikasi 

Pers.(15) menjadi Pers.(21) sebagai berikut: 

   2 2

1 11,172 0,76 1,172crP EI L EI L      

 2

10,891crP EI L  ... (21) 

 

Kesimpulan 

  

Beberapa poin yang dapat disimpulkan dari makalah 

ini adalah: 

 Persamaan analitik (Pers.10) yang diturunkan 

dengan konsep mekanika benda padat dapat 

digunakan untuk menghitung kekuatan kritis 

buckling struktur kolom bertingkat dua segmen 

untuk berbagai variasi geometri dan pembebanan. 

Hanya saja persamaan tersebut dibatasi untuk 

kondisi kolom dengan ketebalan seragam (h1=h2) 

dan material elastik.  

 

 Program komputasi berbasiskan metode elemen 
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hingga nonlinear yang dikembangkan dapat 

menghitung kekuatan buckling kolom bertingkat 

dua segmen dengan baik. Hal ini dibuktikan 

dengan hasil penghitungan yang mendekati hasil 

penghitungan analitik, dengan tingkat kesalahan 

rata-rata dibawah 5% jika dibandingkan dengan 

persamaan analitik yang telah diturunkan 

sebelumnya. 

 

 Dari hasil analisa numerik untuk kolom bertingkat 

dua segmen, dengan perubahan penampang terjadi 

pada kedua sisi, baik lebar (b) maupun tebal 

kolom (h), dapat diberikan harga pendekatan 

untuk menghitung kekuatan kritis kolom 

bertingkat dalam berbagai variasi kasus, sebagai 

berikut: 

 
Kasus Segmen-1 Segmen-2 Kekuatan Kritis 

Kasus 

3 

A=b×h 

L1=L/2  

P1=0 

E1=E 

A=b/2×h/2 

L2=L/2  

P2=P 

E2=E 

 2

10,604crP EI L

 

Kasus 

4 

A=b×h 

L1=L/2  

P1=P 

E1=E 

A=b/2×h/2 

L2=L/2  

P2=P 

E2=E 

 2

10,591crP EI L

 

Kasus 

5 

A=b×h 

L1=L/2  

P1=P 

E1=E 

A=b/2×h/2 

L2=L/2  

P2=2P 

E2=E 

 2

10,576crP EI L

 

Kasus 

6 

A=b×h 

L1=(2/3)L  

P1=P 

E1=E 

A=b/2×h/2 

L2=(1/3)L  

P2=2P 

E2=E 

 2

10,891crP EI L
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Nomenklatur 

 

I Momen Inersia (mm
4
) 

A Luas Penampang (mm
2
) 

b1×h1 Panjang × Lebar Penampang Segmen 1 

(mm) 

b2×h2 Panjang × Lebar Penampang Segmen 1 

(mm) 

L Panjang Kolom (mm) 

L1 Panjang Segmen 1 (mm) 

L2 Panjang Segmen 2 (mm) 

P1 Beban pada Segmen 1(N) 

P2 Beban pada Segmen 2 (N) 

E Elastisitas Material (N/mm
2
) 

Pcr Beban Kritis Penghitungan Analitik (kN) 

Pcr, num Beban Kritis Penghitungan Numerik (kN) 

① Titik Pengamatan pada Tumpuan Jepit 

② Titik Pengamatan pada sambungan antar 

segmen 

③ Titik Pengamatan pada Ujung Bebas 

M1 Momen pada titik pengamatan ① 

M2 Momen pada titik pengamatan ③ 

a Rasio Perbandingan I1/I2 

b Rasio Perbandingan L1/L 

c Faktor pengali gaya P1 

d Faktor pengali gaya P2 

y1 Lendutan searah sb-y pada kolom pada 

ketinggian x1 dari titik ① 

y2 Lendutan searah sb-y pada kolom pada 

ketinggian x2 dari titik ② 

k1, k2 Konstanta (Pers.(3.4) dan (3.5)) 

A,B,C, 

D 

Konstanta Persamaan Lendutan 

Mint Momen sebagai gaya dalam  

  

Greek letters 

 Rasio Poison 

 Faktor Reduksi 

y Tegangan Luluh (N/mm
2
) 

2 Lendutan pada titik pengamatan ② 

3 Lendutan pada titik pengamatan ③ 
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