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Abstrak

Di samping perancangan inovatif, perancangan rutin merupakan kategori kegiatan perancangan teknik yang
penting untuk menghasilkan varian produk berdasarkan kriteria perancangan yang berbeda. Aspek efisiensi dan
akurasi dalam menyediakan solusi rancangan adalah parameter penting dalam proses perancangan tipe ini.
Perancangan berbasis pengetahuan diusulkan sebagai metodologi perancangan yang menggabungkan pengetahuan
terhadap karakteristik produk/sistem yang dirancang dengan teknik optimasi untuk memperoleh solusi rancangan
yang optimum secara efisien, sehingga diperoleh lead time perancangan yang relatif lebih pendek. Proses
perancangan dibagi menjadi dua tahap, yaitu penyusunan basis data perancangan dan optimasi. Basis data
perancangan yang terdiri dari pasangan parameter input dan output perancangan diwakili oleh suatu metamodel
sederhana namun akurat. Dengan persamaan metamodel yang lebih sederhana ini, proses optimasi numerik yang
bersifat iteratif dapat dilakukan secara lebih efisien. Dalam makalah ini, metodologi perancangan berbasis
pengetahuan dipaparkan secara detail melalui contoh aplikasi, dengan fokus pada perumusan fungsi objektif
optimasi dengan mempertimbangkan faktor-faktor ketidakpastian dalam basis data perancangan, terutama untuk
kasus dengan basis data perancangan yang diperoleh studi parametrik dari pengujian empirik. Dengan
pertimbangan faktor ketidakpastian ini, metodologi akan memberikan informasi mengenai rentang ketidakakuratan
hasil optimasi. Arah pengembangan lebih lanjut metodologi diusulkan, meliputi peningkatan akurasi
metamodelling, dan pengembangan perangkat lunak yang mengintegrasikan keseluruhan metodologi secara
generik sehingga dapat dipakai untuk berbagai aplikasi secara lebih mudah
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PENDAHULUAN (ill-defined problems), maka sebaliknya, Routine
design didefinisikan sebagai kegiatan perancangan
yang telah dilakukan berulang kali berdasarkan
domain (parameter input dan output perancangan)
yang sama, dengan permasalahan  yang dapat
didefinisikan dengan baik (well-defined problems).
Masalah perancangan tinggal menentukan set
parameter input yang dapat memenuhi persyaratan
perancangan yang telah disusun sebelumnya.

Proses perancangan dimulai dari perumusan masalah
yang terdiri dari elemen dasar berikut (Dieter, 1991):

=  Pernyataan kebutuhan

= Tujuan

= Batasan

= Persyaratan dan ketentuan

= Kiriteria untuk evaluasi
Perumusan masalah perancangan dalam bentuk yang

lebih rinci dalam bentuk Product Design Specification Dalam proses perancangan rutin, selain akurasi,

(PDS), yang meliputi hingga 32 aspek (Pugh, 1991).
Bernaras & Van de Velde (Breuker & Van de Velde,
1994), mengklasifikasikan perancangan dari aspek
kriteria dan definisi masalahnya menjadi: Routine
design, Innovative design, dan Original design.
Pendefinisian ini selaras dengan class I, class II, dan
class III design, yang dikemukakan oleh Brown &
Chandrasekaran, 1989. Jika  Original design
memiliki kriteria/persyaratan perancangan yang tidak
konsisten, tidak lengkap, tidak teliti atau tidak jelas

efisiensi keseluruhan proses menjadi penting, sehingga
waktu keseluruhan pengembangan produk bisa
dipersingkat.  Permasalahan  perancangan dapat
diselesaikan ~ sebagai  permasalahan  optimasi.
Kebutuhan dan tujuan perancangan selanjutnya akan
diterjemahkan dalam bentuk matematika sebagai
fungsi objektif (objective function); batasan-batasan
perancangan  diterjemahkan sebagai  persamaan
dan/atau pertidaksamaan batasan (constraints); kriteria
evaluasi diterjemahkan sebagai evaluasi fungsi
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(function evaluation); sedangkan parameter yang
dirancang/dipilih  diperlakukan  sebagai  peubah
perancangan (design variables).

Dalam perancangan yang melibatkan proses optimasi,
untuk meng-evaluasi fungsi, diperlukan pengetahuan
akan hubungan antara parameter input dan output
perancangan. Pengetahuan fungsi evaluasi tersebut
dapat berasal dari intuisi/pengalaman perancang,
perumusan teoretik/analitik, hasil pengujian empirik
secara sistematis, atau dari simulasi numerik. Pada
banyak kasus, diperlukan biaya yang cukup besar
untuk memperoleh hubungan tersebut dari studi
empirik. Selanjutnya, hasil studi empirik tersebut
dapat ditampilkan ke dalam grafik-grafik. Untuk dapat
diterapkan dalam optimasi numerik, hasil studi
empirik tersebut perlu diterjemahkan ke dalam
fungsi-fungsi  eksplisit melalui regresi. Untuk
karakteristik yang menghubungkan parameter input
perancangan jamak dengan suatu output perancangan,
proses regresi dapat dilakukan antara lain dengan
multiple linear regression atau response surface
modelling.  Untuk permasalahan yang harus
menggunakan  perangkat lunak umum  untuk
memperoleh parameter output perancangan sering
memakan waktu yang lama. Jika proses optimasi
melibatkan simulasi numerik menggunakan perangkat
lunak tersbut di atas, maka waktu yang diperlukan
untuk memperoleh solusi optimum untuk satu kasus
saja akan jauh lebih lama.

Dengan permasalahan mahalnya biaya studi empirik
maupun lamanya proses optimasi yang melibatkan
perangkat lunak umum seperti dijelaskan di atas, maka
diusulkanlah  metodologi  perancangan berbasis
pengetahuan. Dengan metodologi ini, basis data
perancangan yang diperoleh dari studi parametrik
berdasarkan jumlah sampel terbatas dirumuskan

Pembuatan basis data

Metamodelling

menjadi hubungan eksplisit yang sederhana (disebut
metamodelling) untuk digunakan dalam proses
optimasi secara lebih efisien. Basis data perancangan
tersebut disusun dan dirumuskan sekali saja, untuk
kemudian dipergunakan untuk perancangan rutin
dengan kriteria perancangan yang berbeda. Secara
keseluruhan, penggunaan metodologi ini untuk
diharapkan dapat mempercepat proses perancangan
rutin yang pada akhirnya akan memotong lead time
pengembangan produk.

METODOLOGI

Secara garis besar, metodologi perancangan berbasis
pengetahuan dibagi menjadi dua tahap, yaitu
penyusunan basis data perancangan dan optimasi.

Untuk suatu kasus generik tertentu, proses dimulai
dengan membangun basis data perancangan, yang
diperoleh antara lain dari pengujian empirik maupun
simulasi numerik menggunakan suatu perangkat lunak
khusus. Untuk menjamin keakuratan dan keberlakuan
basis data, pendefinisian kombinasi parameter input
dibuat sedemikian sehingga terdistribusi secara merata
dengan menggunakan teknik sampling tertentu,
misalnya Monte Carlo atau Latin Hypercube.
Berdasarkan sampling tersebut, parameter output
perancangan dicari dengan menggunakan pengujian
empirik atau simulasi numerik menggunakan suatu
perangkat lunak khusus. Pasangan parameter input dan
output inilah yang membentuk basis data perancangan.
Sebelum  dipergunakan dalam tahap optimasi
perancangan, hubungan antara parameter input dan
output perancangan dimodelkan secara lebih
sederhana namun akurat melalui proses
metamodelling.

Optimization process

( Mulai )
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s — Proses Metamodeling
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Gambar 1. Diagram alir metodologi perancangan berbasis pengetahuan
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Gambar 1 menjelaskan keseluruhan metodologi
perancangan berbasis pengetahuan. Sebagaimana
proses optimasi dalam perancangan pada umumnya,
dalam metodologi perancangan berbasis pengetahuan
ini, permasalahan perancangan didefinisikan dalam
domain peubah yang berupa parameter input
perancangan, dan suatu fungsi objektif dan kendala
yang merupakan fungsi dari parameter-parameter
output perancangan. Pada setiap evaluasi fungsi
objektif dalam proses iteratif optimasi, metamodel
yang sudah didefinisikan di ataslah yang akan
menggantikan hubungan parameter input dan output
perancangan, sehingga keseluruhan proses optimasi
dapat dilaksanakan secara lebih efisien dan efektif.

Aplikasi metodologi dilakukan melalui simulasi
optimasi pemilihan komposisi rem komposit.
Permasalahan ~ optimasi  kasus sini  dapat
disederhanakan menjadi bentuk least squares, dengan
meminimalkan beda antara tiga karakteristik material
dengan target yang dituju, untuk suatu aplikasi rem
komposit tertentu, yaitu coefficient of friction, cross
breaking strength, scrush strength. Dengan tiga
karakteristik material yang dituju, maka permasalahan
menjadi optimasi multiobjektif dengan tiga sub fungsi
objektif yang selanjutnya dijadikan satu fungsi objektif
dengan pembobotan, seperti dibahas di bawah ini.

Perumusan Fungsi Objektif

Dalam berbagai aplikasi, banyak persoalan yang
melibatkan optimasi dengan fungsi objektif yang
banyak/optimasi multiobjektif. Salah satu metode
optimasi multiobjektif adalah dengan menggabungkan
subfungsi-subfungsi objektif menjadi satu fungsi
objektif dengan menggunakan pembobotan. Persoalan
least squares, dalam hal ini adalah dengan
meminimumkan beda antara nilai prediksi dengan nilai
target untuk masing-masing karakteristik material.
Nilai prediksi diperoleh dari hubungan metamodel
radial basis function yang diperoleh dari basis data
perancangan hasil pengujian, dalam bentuk:

Cl(L)= zw expl(L—e)/r)

dimana, W; adalah faktor yang diperoleh dari proses
metamodelling, L adalah vektor parameter input
perancangan, ¢ adalah vektor basis data perancangan, r
adalah parameter lebar dari radial basis function.
Untuk basis data perancangan tertentu, dan parameter
lebar, r, tertentu, faktor W; diperoleh dengan metode
ridge regression yang selanjutnya dipakai untuk
memprediksi masing-masing karakteristik material,
yaitu coefficient of friction, cross breaking strength,
dan crush strength.

Selanjutnya proses least squares diperoleh dengan
menggabungkan kuadrat beda dari masing-masing

karakteristik material dengan dihubungkan dengan
pembobotan. Beberapa metode pembobotan pada yang
dikenal diantaranya.
1. Method of Objective Weighting
Metode yang paling sederhana ini
mengkombinasikan setiap fungsi objektif menjadi
satu persamaan, sbb.

N
7= Zwi (%)
i=1

dimana x € X, X = feasible Region
w; =bobot/weight dengan fraksi angka antara 0 dan 1.

Metode ini dibagi menjadi 2 tipe kategori yaitu
linear weighting dan non-linear weighting.
Berikut ini adalah contoh formulasi keduanya:
a. Linear Weighting Formula
Z=w;i i) + 1 —-w) i),
0<w <1
b. Non-Linear Weighting Formula
Z=w; fi(x) +1—-w;? fi(x),
0w <1
2. Method of Distance Function
Proses skalarisasi metode ini adalah menggunakan
demand-level § yang sudah ditentukan. Notasi
matematisnya adalah sebagai berikut.

N 7
z= [Zm(x)—w] . 1sr<o
i=1

dimana x € X(feasible region).Umumnya besar r
(Eucledian metric) yang dipilih adalah 2. Solusi
akan bergantung pada pemilihan demand-level.
Perbedaan metode ini dengan metode objective
weighting a dalah nilai sasaran/target perlu
diketahui lebih dulu dan penting untuk
mengetahui nilai sasaran/target yang optimum
sebelumnya.

3. Min-Max Formulation
Prinsip dari metode ini adalah berusaha mencari
harga minimum dari perbedaan deviasi maksimum
masing-masing solusi single objectivenya, yang
dapat dituliskan dalam bentuk berikut,

Minimize F(x) = max[Z;(x)], j=12,..N
Z;(x) dihitung dari nilai target optimum (tidak negatif) f
200 = 10

(x) = =,

] f

Metode ini dapat menemukan solusi yang terbaik

dengan prioritas yang sama disetiap fungsi

objektifnya.

j=12..N

Dalam makalah ini, bentuk paling dasar pembobotan,
yaitu Method of Objective Weighting dipakai.
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Dalam aplikasi metodologi perancangan berbasis
pengetahuan, basis data perancangan diperoleh dari
serangkaian  pengujian yang memiliki tingkat
kesalahan atau ketidakpastian. Dengan masukan basis
data yang mengandung ketidakpastian/kesalahan,
maka kesalahan tersebut akan diteruskan ke
metamodel hingga fungsi objektif. Untuk mengatasi
hal itu, dalam makalah ini, dirumuskan fungsi objektif
yang mengakomodasi ketidakpastian dalam basis data
perancangan. Diusulkan, fungsi bobot yang didasarkan
pada dua parameter, yaitu tingkat akurasi basis data
prancangan dan tingkat kepentingan masing-masing
sub-fungsi objektif. Tingkat akurasi basis data
didefinisikan sebagai kebalikan dari Standard error of
estimate, yang diperoleh dari perbandingan antara
basis data hasil pengujian dan metamodel, seperti pada
persamaan berikut.

1 n—2
W, =75 = —’2
Sy 20— )
Sementara, bobot dari tingkat kepentingan

didefinisikan sebagai normalisasi dari perbandingan
relatif prioritas masing-masing karakteristik material
rem yang dituju.

Nantinya, harga standard error of estimate akan
dipakai untuk mencari rentang keyakinan (confidence
band) terhadap hasil prediksi karakteristik material.
Rentang keyakinan ini didasarkan pada persentase
keyakinan tiap data yang diharapkan, sbb.

Confidence band= Y + S, - Z
dengan, Z sebesar 1,96 untuk tingkat keyakinan 90%,

Selanjutnya, penggabungan antara kedua bobot
tersebut dicoba dilakukan melalui 3 alternatif bentuk,
yaitu: 1) Perkalian antara bobot kepentingan dan bobot
akurasi, 2) Penjumlahan antara bobot kepentingan dan
bobot akurasi, 3) sama dengan alternatif kedua namun
bobot hasil penjumlahan dinormalisasi antar bobot
masing-masing karakteristik material, yaitu coefficient
of friction, cross breaking strength, crush strength.

Fungsi Penalti

Fungsi penalti berperan untuk membatasi pencarian
solusi dalam optimasi ke dalam rentang nilai target
yang layak (feasible). Rentang nilai didefinisikan
dalam nilai batas atas dan batas awah sesuai dengan
pengetahuan awal. Dalam eksplorasi solusi optimum,
terkadang algoritme optimasi mengarah pada solusi
yang tidak layak. Fungsi penalti inilah yang akan

“memaksa” pencarian optimum ke dalam daerah layak.

Dengan adanya fungsi penalti ini, pencarian solusi
optimum dapat tetap menggunakan teknik optimasi
global tanpa kendala namun tetap dapat memperoleh
solusi yang layak. Jenis-jenis fungsi penalti yang dapat

digunakan adalah sebagai berikut.

1. Death Penalty Function

Metode yang paling sederhana untuk menolak
daerah infeasible adalah memberikan suatu
konstanta yang bernilai besar. Jika solusi arah
pencarian bersifat convex atau persoalan optimasi
dengan design variable dan jumlah kendala yang
sedikit maka fungsi ini dapat berfungsi dengan
baik. Banyak ditemukan masalah jika digunakan
untuk menyelesaikan persoalan optimasi yang
lebih rumit lagi.

2. Static Penalty Function
Parameter penalti jenis ini tidak bergantung pada
jumlah generasi dan tidak memberikan nilai
penalti yang sama untuk daerah yang tidak
feasible melainkan berubah-ubah sesuai dengan
fungsi yang digunakan dan jauhnya nilai prediksi
dari batas yang diperbolehkan.

3. Dynamic Penalty Function
Parameter penalti ini bergantung pada jumlah
generasi sehingga semakin meningkat jumlah
generasi yang dilakukan maka nilai pelanggaran
akan semakin besar. Menurut Jones and Houck [],
fungsi dapat digambarkan dalam notasi sebagai
berikut.
eval (%) = f(%) + (C- )% SVC (B,%)

C, a dan (3 adalah konstanta yang ditentukan oleh
pengguna dan t adalah jumlah generasi. Joines dan
Houck, 1994, menggunakan C = 0,5, a =1 atau
2, B =1 atau 2. SVC (B,X) didefinisikan sebagai
fungsi pelanggaran.

Pemilihan jenis fungsi penalti bertujuan untuk
mendapatkan fungsi penalti yang optimum yaitu
menghasilkan nilai optimum didalam daerah feasible
dan mendekati nilai target. Selain itu, fungsi penalti
dapat mempercepat proses optimasi dalam mencapai
nilai optimum.

Dalam studi kasus optimasi fungsi penalti dicoba
dengan menerapkan fungsi polinomial orde tinggi jika
sudah algoritme optimasi mengarah pada batas solusi
tidak layak, sehingga diharapkan pada daerah batas
kendala, fungsi objektif masih kontinu dan dapat
diturunkan, seperti bentuk berikut,

eval (X) = f(X) x (L - Lwn)4

Jika (L—L" ) (L* —Ly) <0

Fungsi penalti terhadap karakteristik ini perlu
diterapkan di samping kendala batas, karena dalam
aplikasinya, terdapat rentang harga karakteristik yang
dibolehkan berdasarkan spesifikasi produk.

Rumusan Masalah Optimasi
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Studi kasus yang digunakan adalah penyelesaian
permasalahan  optimasi rem komposit dengan
karakteristik ~ optimasi  multiobjektif, non-linear.
Permasalahan optimasi terdiri dari 7 peubah input,
yang merupakan komposisi (dalam %) dari ketujuh
bahan penyusun rem komposit, dan 3 peubah output,
yang merupakan tiga karakteristik penting dalam rem
komposit.

Fungsi objektif:

Min( fitness) = Mini w ( c'(L)

C i

1] e

Fungsi kendala:
P =(C'(L)-C!),jika (C'(L)-C/C! - C'(L))< 0

dengan, i merupakan indeks yang mewakili
masing-masing dari ketiga karakteristik material rem.

Perhitungan bobot, W berdasarkan tiga alternatif
seperti disampaikan pada sub bab Perumusan Fungsi
Objektif. €' (L) dan €} adalah, masing-masing,
karakteristik material prediksi berdasarkan parameter
input L dan target optimasi; C} dan C} adalah,
masing-masing, batas bawah dan batas atas dari
karakteristik.

Teknik Optimasi

Penggunaan teknik optimasi yang sesuai untuk
penyelesaian tiap permasalahan optimasi didasarkan
pada karakteristik permasalahan optimasi. Berdasarkan
bentuk bentangan fungsi, permasalahan optimasi
dibagi menjadi dua yaitu unimodal (convex dan
concave) dan multimodal (noisy). U nimodal adalah
permasalahan yang memiliki 1 titikk optimum
sedangkan multimodal memiliki banyak titik optimum
(optimum lokal dan global). Di smaping itu,
permasalahan optimasi juga didasarkan pada ada
tidaknya kendala, jumlah fungsi objektif yang
digunakan, nilai variabel perancangan yang akan
diinginkan, bentuk nilai optimum yang didapat, dan

ekspresi fungsi persamaannya. Kesemuanya itu
memiliki metode-metode  khusus dalam  solusi
penyelesaiannya.

Beberapa teknik optimasi numerik konvensional
berikut ini dapat digunakan untuk penyelesaian
masalah optimasi unimodal, antara lain
steepest-descent, conjugate gradient, sequential
quadratic programming (SQP), pattern search, linear
| approximation methods (Lim, 2009; Vanderplaats,
1984; Arora, 1989) Satu alasan yang memungkinkan
di balik penggunaan metode tersebut secara luas
adalah jaminan konvergensi teoretik yang kuat, paling
tidak untuk optimum lokal. Secara umum, metode
optimasi konvensional bersifat pasti (deterministik),
dimana sebuah titikk awal yang baik dapat

mendapatkan harga optimum global yang diinginkan.
Namun, untuk kasus lain proses optimasi terkadang
terjebak pada optimum lokal. Ketidaktersediaan
informasi  kemiringan (gradient) yang akurat,
gangguan (noisy) dan multimodal landscapes juga
dapat mengurangi tingkat efektivitas dibanyak
permasalahan dunia nyata.

Dalam beberapa dekade terakhir ini telah banyak
dikembangkan teknik optimasi baru, yang mengarah
pada optimasi stokastik, yang masuk kategori metode
Evolutionary Algorithm (EA), diantaranya Genetic
Algorithm (GA) dan Memetic Algorithm (MA) [2-3].
Optimasi stokastik dapat menunjukkan hasil baik
untuk permasalahan berdimensi tinggi, multimodal,
berkendala dan tidak kontinu atau tidak bisa
diturunkan. Untuk meningkatkan kemungkinan proses
optimasi mengarah pada optimum global, pencarian
fungsi objektif yang optimum dilakukan dengan proses
iterasi yang dilakukan dengan melakukan beberapa
kali proses running optimasi dengan nilai target yang
sama untuk setiap alternatif fungsi objektif. Fungsi
objektif yang optimum adalah fungsi objektif yang
mendekati nilai target dengan beda terkecil di antara
sekumpulan running. Metode ini dikembangkan lebih
lanjut dengan menggabungkan metode Genetic
Algorithm (GA), yang merupakan metode stokastik
dan Sequential Quadratic Programming (SQP), yang
merupakan metode deteministik, yang dinamakan
metode Memetic Algorithm (MA). Dengan metode
baru ini, diharapkan pencarian nilai optimum dapat
mengarah ke solusi optimum global, yang selanjutnya
akan dilanjutkan dengan pencarian solusi lokal untuk
meningkatkan kepresisian. Dalam kasus perancangan
rem komposit ini, teknik GA akan diterapkan dengan
rumusan masalah optimasi seperti yang dirangkum di
bawabh ini.

HASIL DAN PEMBAHASAN

Pengaruh faktor ketidakpastian dari basis data
terhadap hasil optimasi menggunakan metodologi
perancangan berbasis pengetahuan dianalisis melalui
simulasi kasus. Ketidakpastian disimulasi dengan cara
memberikan kesalahan secara acak pada hubungan
antara parameter input dan output yang telah
didefinisikan terlebih dahulu, seperti pada persamaan
berikut.

c'(L)= f(L)+R-x

dengan, X adalah angka pseudo-random, dan R adalah
konstanta simulasi kesalahan. Untuk kepentingan
simulasi, dicoba harga R sebesar: 0 (tidak ada
kesalahan); 0,1; 0,5; 1; 5.

Tabel 1 menunjukkan pengaruh dari faktor kesalahan,
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R, terhadap standard of error of estimate dari basis
data simulasi untuk masing-masing karakteristik
material.

Pasangan input-output yang mengandung komponen
kesalahan simulasi tersebut selanjutnya dianggap
seoalah-olah sebagai basis data hasil pengujian yang
mengandung kesalahan acak dengan standard of error
estimate sebagaimana tertera pada Tabel 1.

Tabel 1. Standard of error estimate (%) dari basis data
untuk masing-masing konstanta simulasi kesalahan (R)

Parameter Konstanta simulasi error (R)

0 0,1 0,5 1 5

Crush strength 0,0 9,0 9,3 9,9 25,2

Cross breaking | 0,0 8,7 10,7 12,1 24,2
strength

Koefisien 0,0 18,2 | 55,7 | 109,1 | 665,5
Gesek

Metode optimasi yang digunakan dalam simulasi ini
adalah metode Memetic Algortihm (MA). Hasil error
yang ditampilkan pada grafik adalah hasil parameter
output C'(L) dengan penambahan error simulasi

buatan yang dianggap sebagai error yang dihasilkan
pada basis data.

Tabel 2. Studi kasus simulasi optimasi, target dan hasil
optimasi tanpa mempertimbangkan faktor ketidakpastian
dalam basis data

Karakteristik material Studi Kasus Simulasi
1 [ 2 ] 3
Target:
Crush strength (N/cm?) 6000 5000 6000
Cross breaking strength (N/cm®) 3000 3000 4000
Friction coefficient 0,180 0,180 0,300
Hasil Optimasi (tanpa mempertimbangkan faktor
ketidakastian):
Crush strength (N/cm?) 6008 5089 6060
Cross breaking strength (N/cm?) 2985 2825 4090
Friction coefficient 0,182 0,182 0,302
Simulasi  proses optimasi dilakukan  dengan

memberikan target harga karakteristik material untuk 3
kasus berbeda, seperti pada bagian atas Tabel 2. Jika
basis data tidak mengandung kesalahan acak, proses
optimasi akan menghasilkan solusi optimum seperti
pada bagian bawah Tabel 2. Hasil ini sebagai baseline
perbandingan terhadap kasus-kasus dengan kesalahan
acak pada basis data, seperti disimulasikan dengan
adanya konstanta simulasi error, R, pada Tabel 1.
Meskipun tidak terdapat kesalahan acak pada basis
data, proses optimasi sudah memiliki kesalahan dari
target optimasi, mulai dari 0,13% hingga 5,8%.
Dengan basis data yang memiliki kesalahan acak yang
dismulasikan besarnya menggunakan konstanta
simulasi error, R, maka kesalahan akibat optimasi juga
akan membesar. Kesalahan total dari keseluruhan

proses optimasi akan membesar dengan membesarnya
ketidakpastian yang terkandung dalam basis data,
seperti diharapkan. Gambar 2 hingga Gambar 4
menunjukkan hubungan antara nilai standard of error
estimate, terhadap kesalahan total dari proses optimasi
untuk ketiga kasus simulasi, seperti pada bagian atas
Tabel 2. Untuk kasus standard of error of estimate 0,
kesalahan total optimasi dapat diartikan kesalahan dari
teknik optimasi. Dalam contoh ini, konstanta faktor
simulasi error lebih dari 0,1 sudah menyebabkan
standard of error estimate yang tinggi untuk kasus
friction coefficient.

- 553
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Gambar 2. Pengaruh standar of error estimate terhadap
kesalahan optimasi pada karakteristik Crush strength
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Gambar 3. Pengaruh standar of error estimate terhadap
kesalahan optimasi pada karakteristik Cross Breaking

Strength
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Gambar 4. Pengaruh standar of error estimate terhadap
kesalahan optimasi pada karakteristik coefficient of friction

1918



MT-013

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM Xl) & Thermofluid IV

Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012

Dengan pengembangan metodologi ini, ketidakpastian
dalam basis data dapat dicerminkan ke hasil optimasi.
Sebagai contoh untuk kasus simulasi 2, dan dengan
basis data yang mengandung kesalahan dengan
standard of error estimate untuk parameter output
cross breaking strength 8,7%, maka kesalahan total
akibat proses optimasi dan ketidakpastian dalam basis
data adalah 16,2%. Jika hasil optimasi yang dihasilkan
dari proses optimasi adalah 2825 N/cm? maka
kesalahan tersebut berharga 458 N/cm’. Dari informasi
ini, dapat dituliskan hasil keseluruhan proses optimasi
dengan mnggunakan metodologi perancangan berbasis
pengetahuan yang memperhatikan ketidakpastian
sebagai 2825 + 458 N/cm’. Hasil dari penelitian ini
dapat bermanfaat untuk menunjukkan variasi
kesalahan dari hasil optimasi, sehingga pengguna
mendapat informasi kemungkinan kesalahan dari
proses optimasi akibat ketidakpastian pada basis data
perancangan dari pengujian.

Dalam beberapa kasus, target optimasi merupakan
rentang dari suatu nilai, bukan nilai tunggal, misalnya
dalam kasus spesifikasi produk rem yang
mensyaratkan friction coefficient dari 0,18 — 0,23.
Dengan metodologi perancangan berbasis pengetahuan,
target optimasi dapat didefinisikan pada suatu nilai
tertentu di antara rentang tersebut, dan setelah hasil
optimasi dengan rentang kesalahan yang diketahui,
maka pengguna dapat mengetahui apakah hasil
tersebut masih masuk dalam rentang pesifikasi produk
yang dibolehkan.

KESIMPULAN

Perancangan rutin merupakan tipe perancangan
dengan permasalahan yang dapat didefinisikan
dengan baik (well-defined problems).
Permasalahan perancangan rutin adalah mencari
parameter perancangan yang menghasilkan solusi
optimum. Metodologi perancangan berbasis data,
berpotensi  diaplikasikan  secara  efektif untuk
perancangan tipe rutin, yang memerlukan kecepatan
dan akurasi. Dalam makalah ini, metodologi
perancangan berbasis pengetahuan telah memasukkan
usulan  pengembangan yang memperhitungkan
ketidakpastian dalam basis data perancangan, yang
biasanya berasal dari pengujian empirik.

Hasil  optimasi  sudah  memasukkan  faktor
ketidakpastian, dalam bentuk y + e,, dengan y
adalah hasil optimasi dan e, adalah variasi
kesalahan akibat ketidakpastian dalam basis data
perancangan yang diperoleh dari pengujian
empirik.

Dari  observasi simulasi,

melalui diperoleh

hubungan positif antara besarnya ketidakpastian
dalam basis data perancangan dengan kesalahan
pada hasil optimasi secarakeseluruhan.

REFERENSI

Arora, J.S., Introduction to Optimum Design.

1989, California: McGraw-Hill.

Bazan, M., M. Aleksa, and S. Russenschuck, An
improved method using radial basis function neural
networks to speed up optimization algorithms. IEEE
TRANSACTIONS ON MAGNETICS, 2002. 38(2)

Breuker, J. and Van de Velde, W. (editors),
Commonkads library for expertise modelling,
Frontiers in Al & Applications, IOS Press, Amsterdam,
the Netherlands, 1994

Brown, D.C. and B. Chandrasekaran, Design
Problem Solving: Knowledge Structures and Control
Strategies. Research Notes in Artificial Intelligence
Series, Pitman Publishing, Ltd., London, England,
1989

Dieter, G.E., Engineering design, a materials and
processing approach, McGraw-Hill, 1991.

Joines. J. and Houck, C., On the Use of
Non-Stationary Penalty Function to Solve
Non-Linear Constrained Optimization Problems
with GA's. Proceeding of the first IEEE
International ~ Conference on  Evolutionary
Computation, 1994: p. 579-584.

Kleijnen, J., Statistical tools for simulation
practitioners. 1987, New York: Marcel Dekker

Meckesheimer, M., et al., Computationally inexpensive
metamodel assessment strategies. AIAA Journal, 2002.
40(10): p. 2053-2060

Lim, D., Brief Survey on Evolutionary

Formatted: Font: 12 pt, Italic, Do not
check spelling or grammar

Constrained  Optimization of  Optimization
Problems, Nanyang Technological University:

Singapore, 2009.

Lim, D., Y.S. Ong, R. Setiawan and M. Idris,
Classifier-assisted Constrained Evolutionary
Optimization for Automated Geometry Selection of
Orthodontic Retraction Spring, Proc. 2010 IEEE
Congress on Evolutionary Computation Proc.,
Barcelona, 18-23 July, 2010.

1919

Formatted: Font: 12 pt, Italic, Do not
check spelling or grammar




MT-013

Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM Xl) & Thermofluid IV

Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012

Olsson, A.M.J. and G.E. Sandberg, Latin hypercube
sampling for stochastic finite element analysis. Journal
of Engineering Mechanics-ASCE, 2002. 128( 1): p.
121-125.

Wang, G. G., and S. Shan, Review of Metamodelling
Techniques in  Support of Engineering Design
Optimization, Journal of Mechanical Design, 2006.

Pugh, S., Total design, integrated methods for
successful product engineering, Addison-Wesley,
1991.

Roux, W.J., N. Stander, and R.T. Haftka, Response
surface approximations for structural optimization. Int.
J. Numer. Meth. Engng., 1998. 42.

Approach to Mechanical Characterization of
Anisotropic Plates, Journal of Composite Materials,
Vol. 43, No. 21/2009

Setiawan, R., S Syngellakis, M Hill, A MetamodelingA—‘

Vanderplaats, N.G., Numerical Optimization

Formatted: Subtitle, Indent: Left:
-0,18 cm, First line: 0 cm, Space After:
12 pt

Techniques for Engineering Design, McGraw-Hill,
California, 1984

1920

Formatted: Font: 12 pt, Italic, Do not
check spelling or grammar




	03 MT completed
	03 MT completed
	Binder 10-30
	MT - 013
	Rachman Setiawan dan Yulianto
	Kelompok Keahlian Perancangan Mesin
	Abstrak
	Keywords: Metodologi perancangan, Perancangan berbasis pengetahuan, optimasi, ketidakpastian
	PENDAHULUAN
	METODOLOGI
	Perumusan Fungsi Objektif
	Fungsi Penalti
	Rumusan Masalah Optimasi
	Teknik Optimasi

	HASIL DAN PEMBAHASAN
	KESIMPULAN
	REFERENSI





