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Abstrak 
 
Di samping perancangan inovatif, perancangan rutin merupakan kategori kegiatan perancangan teknik yang 
penting untuk menghasilkan varian produk berdasarkan kriteria perancangan yang berbeda. Aspek efisiensi dan 
akurasi dalam menyediakan solusi rancangan adalah parameter penting dalam proses perancangan tipe ini. 
Perancangan berbasis pengetahuan diusulkan sebagai metodologi perancangan yang menggabungkan pengetahuan 
terhadap karakteristik produk/sistem yang dirancang dengan teknik optimasi untuk memperoleh solusi rancangan 
yang optimum secara efisien, sehingga diperoleh lead time perancangan yang relatif lebih pendek. Proses 
perancangan dibagi menjadi dua tahap, yaitu penyusunan basis data perancangan dan optimasi. Basis data 
perancangan yang terdiri dari pasangan parameter input dan output perancangan diwakili oleh suatu metamodel 
sederhana namun akurat. Dengan persamaan metamodel yang lebih sederhana ini, proses optimasi numerik yang 
bersifat iteratif dapat dilakukan secara lebih efisien. Dalam makalah ini, metodologi perancangan berbasis 
pengetahuan dipaparkan secara detail melalui contoh aplikasi, dengan fokus pada perumusan fungsi objektif 
optimasi dengan mempertimbangkan faktor-faktor ketidakpastian dalam basis data perancangan, terutama untuk 
kasus dengan basis data perancangan yang diperoleh studi parametrik dari pengujian empirik. Dengan 
pertimbangan faktor ketidakpastian ini, metodologi akan memberikan informasi mengenai rentang ketidakakuratan 
hasil optimasi. Arah pengembangan lebih lanjut metodologi diusulkan, meliputi peningkatan akurasi 
metamodelling, dan pengembangan perangkat lunak yang mengintegrasikan keseluruhan metodologi secara 
generik sehingga dapat dipakai untuk berbagai aplikasi secara lebih mudah  
 
Keywords: Metodologi perancangan, Perancangan berbasis pengetahuan, optimasi, ketidakpastian 
 

PENDAHULUAN 
 
Proses perancangan dimulai dari perumusan masalah 
yang terdiri dari elemen dasar berikut (Dieter, 1991): 
 Pernyataan kebutuhan 
 Tujuan 
 Batasan 
 Persyaratan dan ketentuan 
 Kriteria untuk evaluasi  

Perumusan masalah perancangan dalam bentuk yang 
lebih rinci dalam bentuk Product Design Specification 
(PDS), yang meliputi hingga 32 aspek (Pugh, 1991). 
Bernaras & Van de Velde (Breuker & Van de Velde, 
1994), mengklasifikasikan perancangan dari aspek 
kriteria dan definisi masalahnya menjadi: Routine 
design, Innovative design, dan Original design. 
Pendefinisian ini selaras dengan class I, class II, dan 
class III design, yang dikemukakan oleh Brown & 
Chandrasekaran, 1989. Jika Original design  
memiliki kriteria/persyaratan perancangan yang tidak 
konsisten, tidak lengkap, tidak teliti atau tidak jelas 

(ill-defined problems), maka sebaliknya, Routine 
design didefinisikan sebagai kegiatan perancangan 
yang telah dilakukan berulang kali berdasarkan 
domain (parameter input dan output perancangan) 
yang sama, dengan permasalahan  yang dapat 
didefinisikan dengan baik (well-defined problems). 
Masalah perancangan tinggal menentukan set 
parameter input yang dapat memenuhi persyaratan 
perancangan yang telah disusun sebelumnya.  
 
Dalam proses perancangan rutin, selain akurasi, 
efisiensi keseluruhan proses menjadi penting, sehingga 
waktu keseluruhan pengembangan produk bisa 
dipersingkat. Permasalahan perancangan dapat 
diselesaikan sebagai permasalahan optimasi. 
Kebutuhan dan tujuan perancangan selanjutnya akan 
diterjemahkan dalam bentuk matematika sebagai 
fungsi objektif (objective function); batasan-batasan 
perancangan diterjemahkan sebagai persamaan 
dan/atau pertidaksamaan batasan (constraints); kriteria 
evaluasi diterjemahkan sebagai evaluasi fungsi 
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(function evaluation); sedangkan parameter yang 
dirancang/dipilih diperlakukan sebagai peubah 
perancangan (design variables).  
 
Dalam perancangan yang melibatkan proses optimasi, 
untuk meng-evaluasi fungsi, diperlukan pengetahuan 
akan hubungan antara parameter input dan output 
perancangan. Pengetahuan fungsi evaluasi tersebut 
dapat berasal dari intuisi/pengalaman perancang, 
perumusan teoretik/analitik, hasil pengujian empirik 
secara sistematis, atau dari simulasi numerik. Pada 
banyak kasus, diperlukan biaya yang cukup besar 
untuk memperoleh hubungan tersebut dari studi 
empirik. Selanjutnya, hasil studi empirik tersebut 
dapat ditampilkan ke dalam grafik-grafik. Untuk dapat 
diterapkan dalam optimasi numerik, hasil studi 
empirik tersebut perlu diterjemahkan ke dalam 
fungsi-fungsi eksplisit melalui regresi. Untuk 
karakteristik yang menghubungkan parameter input 
perancangan jamak dengan suatu output perancangan, 
proses regresi dapat dilakukan antara lain dengan 
multiple linear regression atau response surface 
modelling. Untuk permasalahan yang harus 
menggunakan perangkat lunak umum untuk 
memperoleh parameter output perancangan sering 
memakan waktu yang lama. Jika proses optimasi 
melibatkan simulasi numerik menggunakan perangkat 
lunak tersbut di atas, maka waktu yang diperlukan 
untuk memperoleh solusi optimum untuk satu kasus 
saja akan jauh lebih lama.  
 
Dengan permasalahan mahalnya biaya studi empirik 
maupun lamanya proses optimasi yang melibatkan 
perangkat lunak umum seperti dijelaskan di atas, maka 
diusulkanlah metodologi perancangan berbasis 
pengetahuan. Dengan metodologi ini, basis data 
perancangan yang diperoleh dari studi parametrik 
berdasarkan jumlah sampel terbatas dirumuskan 

menjadi hubungan eksplisit yang sederhana (disebut 
metamodelling) untuk digunakan dalam proses 
optimasi secara lebih efisien. Basis data perancangan 
tersebut disusun dan dirumuskan sekali saja, untuk 
kemudian dipergunakan untuk perancangan rutin 
dengan kriteria perancangan yang berbeda. Secara 
keseluruhan, penggunaan metodologi ini untuk 
diharapkan dapat mempercepat proses perancangan 
rutin yang pada akhirnya akan memotong lead time 
pengembangan produk. 
 
METODOLOGI 
 
Secara garis besar, metodologi perancangan berbasis 
pengetahuan dibagi menjadi dua tahap, yaitu 
penyusunan basis data perancangan dan optimasi.  
 
Untuk suatu kasus generik tertentu, proses dimulai 
dengan membangun basis data perancangan, yang 
diperoleh antara lain dari pengujian empirik maupun 
simulasi numerik menggunakan suatu perangkat lunak 
khusus. Untuk menjamin keakuratan dan keberlakuan 
basis data, pendefinisian kombinasi parameter input 
dibuat sedemikian sehingga terdistribusi secara merata 
dengan menggunakan teknik sampling tertentu, 
misalnya Monte Carlo atau Latin Hypercube. 
Berdasarkan sampling tersebut, parameter output 
perancangan dicari dengan menggunakan pengujian 
empirik atau simulasi numerik menggunakan suatu 
perangkat lunak khusus. Pasangan parameter input dan 
output inilah yang membentuk basis data perancangan. 
Sebelum dipergunakan dalam tahap optimasi 
perancangan, hubungan antara parameter input dan 
output perancangan dimodelkan secara lebih 
sederhana namun akurat melalui proses 
metamodelling. 
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Gambar 1. Diagram alir metodologi perancangan berbasis pengetahuan 
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Gambar 1 menjelaskan keseluruhan metodologi 
perancangan berbasis pengetahuan. Sebagaimana 
proses optimasi dalam perancangan pada umumnya, 
dalam metodologi perancangan berbasis pengetahuan 
ini, permasalahan perancangan didefinisikan dalam 
domain peubah yang berupa parameter input 
perancangan, dan suatu fungsi objektif dan kendala 
yang merupakan fungsi dari parameter-parameter 
output perancangan. Pada setiap evaluasi fungsi 
objektif dalam proses iteratif optimasi, metamodel 
yang sudah didefinisikan di ataslah yang akan 
menggantikan hubungan parameter input dan output 
perancangan, sehingga keseluruhan proses optimasi 
dapat dilaksanakan secara lebih efisien dan efektif. 
 
Aplikasi metodologi dilakukan melalui simulasi 
optimasi pemilihan komposisi rem komposit. 
Permasalahan optimasi kasus sini dapat 
disederhanakan menjadi bentuk least squares, dengan 
meminimalkan beda antara tiga karakteristik material 
dengan target yang dituju, untuk suatu aplikasi rem 
komposit tertentu, yaitu coefficient of friction, cross 
breaking strength, scrush strength. Dengan tiga 
karakteristik material yang dituju, maka permasalahan 
menjadi optimasi multiobjektif dengan tiga sub fungsi 
objektif yang selanjutnya dijadikan satu fungsi objektif 
dengan pembobotan, seperti dibahas di bawah ini. 
 
Perumusan Fungsi Objektif 
Dalam berbagai aplikasi, banyak persoalan yang 
melibatkan optimasi dengan fungsi objektif yang 
banyak/optimasi multiobjektif. Salah satu metode 
optimasi multiobjektif adalah dengan menggabungkan 
subfungsi-subfungsi objektif menjadi satu fungsi 
objektif dengan menggunakan pembobotan. Persoalan 
least squares, dalam hal ini adalah dengan 
meminimumkan beda antara nilai prediksi dengan nilai 
target untuk masing-masing karakteristik material. 
Nilai prediksi diperoleh dari hubungan metamodel 
radial basis function yang diperoleh dari basis data 
perancangan hasil pengujian, dalam bentuk: 

( ) ( )( )∑
=

−=
m

j
j

i rWC
1

22exp cLL  

dimana, Wj adalah faktor yang diperoleh dari proses 
metamodelling, L adalah vektor parameter input 
perancangan, c adalah vektor basis data perancangan, r 
adalah parameter lebar dari radial basis function. 
Untuk basis data perancangan tertentu, dan parameter 
lebar, r, tertentu, faktor Wj diperoleh dengan metode 
ridge regression yang selanjutnya dipakai untuk 
memprediksi masing-masing karakteristik material, 
yaitu coefficient of friction, cross breaking strength, 
dan crush strength.  
 
Selanjutnya proses least squares diperoleh dengan 
menggabungkan kuadrat beda dari masing-masing 

karakteristik material dengan dihubungkan dengan 
pembobotan. Beberapa metode pembobotan pada yang 
dikenal diantaranya. 
1. Method of Objective Weighting  

Metode yang paling sederhana ini 
mengkombinasikan setiap fungsi objektif menjadi 
satu persamaan, sbb. 

Z =  �wi ∙ fi(x)
N

i=1

 

dimana  x ϵ X,    X = feasible Region 
wi = bobot/weight dengan fraksi angka antara 0 dan 1. 
  

Metode ini dibagi menjadi 2 tipe kategori yaitu 
linear weighting dan non-linear weighting. 
Berikut ini adalah contoh formulasi keduanya: 
a. Linear Weighting Formula  

Z =  wi ∙ fi(x)  + (1 − wi) ∙ fi(x),
0 ≤  wi  < 1 

b. Non-Linear Weighting Formula 
Z =  wi ∙ fi(x)  + �1 − wi

2 ∙ fi(x),
0 ≤  wi  < 1 

 
2. Method of Distance Function 

Proses skalarisasi metode ini adalah menggunakan 
demand-level y�  yang sudah ditentukan. Notasi 
matematisnya adalah sebagai berikut. 

Z =  ��|fi(x) − yı� |r
N

i=1

�

1
r

,          1 ≤ r <  ∞ 

dimana x ϵ X(feasible region).Umumnya besar r 
(Eucledian metric) yang dipilih adalah 2. Solusi 
akan bergantung pada pemilihan demand-level. 
Perbedaan metode ini dengan metode objective 
weighting  a dalah nilai sasaran/target perlu 
diketahui lebih dulu dan penting untuk 
mengetahui nilai sasaran/target yang optimum 
sebelumnya. 
 

3. Min-Max Formulation 
Prinsip dari metode ini adalah berusaha mencari 
harga minimum dari perbedaan deviasi maksimum 
masing-masing solusi single objectivenya, yang 
dapat dituliskan dalam bentuk berikut, 
 

Minimize F(x) = max�Zj(x)�,      j = 1,2, … N 
Zj(x) dihitung dari  nilai target optimum (tidak negatif) fȷ�  

Zj(x)  =  
fj − fȷ�

fȷ�
 ,        j = 1,2, … N 

Metode ini dapat menemukan solusi yang terbaik 
dengan prioritas yang sama disetiap fungsi 
objektifnya. 
 

Dalam makalah ini, bentuk paling dasar pembobotan, 
yaitu Method of Objective Weighting dipakai.  
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Dalam aplikasi metodologi perancangan berbasis 
pengetahuan, basis data perancangan diperoleh dari 
serangkaian pengujian yang memiliki tingkat 
kesalahan atau ketidakpastian. Dengan masukan basis 
data yang mengandung ketidakpastian/kesalahan, 
maka kesalahan tersebut akan diteruskan ke 
metamodel hingga fungsi objektif. Untuk mengatasi 
hal itu, dalam makalah ini, dirumuskan fungsi objektif 
yang mengakomodasi ketidakpastian dalam basis data 
perancangan. Diusulkan, fungsi bobot yang didasarkan 
pada dua parameter, yaitu tingkat akurasi basis data 
prancangan dan tingkat kepentingan masing-masing 
sub-fungsi objektif. Tingkat akurasi basis data 
didefinisikan sebagai kebalikan dari Standard error of 
estimate, yang diperoleh dari perbandingan antara 
basis data hasil pengujian dan metamodel, seperti pada 
persamaan berikut. 

𝑤𝑎 =
1
𝑆𝑦.𝑥

 =  �
𝑛 − 2

∑�𝑦𝑖 − 𝑦𝑖′�
2 

 
Sementara, bobot dari tingkat kepentingan 
didefinisikan sebagai normalisasi dari perbandingan 
relatif prioritas masing-masing karakteristik material 
rem yang dituju. 
Nantinya, harga standard error of estimate akan 
dipakai untuk mencari rentang keyakinan (confidence 
band) terhadap hasil prediksi karakteristik material. 
Rentang keyakinan ini didasarkan pada persentase 
keyakinan tiap data yang diharapkan, sbb. 
 
Confidence band = 𝑌 ±  𝑆𝑦.𝑥 ∙ 𝑍 
 
dengan, Z sebesar 1,96 untuk tingkat keyakinan 90%,  
 
Selanjutnya, penggabungan antara kedua bobot 
tersebut dicoba dilakukan melalui 3 alternatif bentuk, 
yaitu: 1) Perkalian antara bobot kepentingan dan bobot 
akurasi, 2) Penjumlahan antara bobot kepentingan dan 
bobot akurasi, 3) sama dengan alternatif kedua namun 
bobot hasil penjumlahan dinormalisasi antar bobot 
masing-masing karakteristik material, yaitu coefficient 
of friction, cross breaking strength, crush strength. 
 
Fungsi Penalti 
Fungsi penalti berperan untuk membatasi pencarian 
solusi dalam optimasi ke dalam rentang nilai target 
yang layak (feasible). Rentang nilai didefinisikan 
dalam nilai batas atas dan batas awah sesuai dengan 
pengetahuan awal. Dalam eksplorasi solusi optimum, 
terkadang algoritme optimasi mengarah pada solusi 
yang tidak layak. Fungsi penalti inilah yang akan 
“memaksa” pencarian optimum ke dalam daerah layak. 
Dengan adanya fungsi penalti ini, pencarian solusi 
optimum dapat tetap menggunakan teknik optimasi 
global tanpa kendala namun tetap dapat memperoleh 
solusi yang layak. Jenis-jenis fungsi penalti yang dapat 

digunakan adalah sebagai berikut. 
 
1. Death Penalty Function 

Metode yang paling sederhana untuk menolak 
daerah infeasible adalah memberikan suatu 
konstanta yang bernilai besar. Jika solusi arah 
pencarian bersifat convex atau persoalan optimasi 
dengan design variable dan jumlah kendala yang 
sedikit maka fungsi ini dapat berfungsi dengan 
baik. Banyak ditemukan masalah jika digunakan 
untuk menyelesaikan persoalan optimasi yang 
lebih rumit lagi. 

 
2. Static Penalty Function 

Parameter penalti jenis ini tidak bergantung pada 
jumlah generasi dan tidak memberikan nilai 
penalti yang sama untuk daerah yang tidak 
feasible melainkan berubah-ubah sesuai dengan 
fungsi yang digunakan dan jauhnya nilai prediksi 
dari batas yang diperbolehkan.  

 
3. Dynamic Penalty Function 

Parameter penalti ini bergantung pada jumlah 
generasi sehingga semakin meningkat jumlah 
generasi yang dilakukan maka nilai pelanggaran 
akan semakin besar. Menurut Jones and Houck [], 
fungsi dapat digambarkan dalam notasi sebagai 
berikut. 

eval (x�) = f(x�) +  (C ∙ t)α SVC (β, x�) 
C,α dan β adalah konstanta yang ditentukan oleh 
pengguna dan t adalah jumlah generasi. Joines dan 
Houck, 1994, menggunakan C = 0,5 , α = 1 atau 
2, β = 1 atau 2. SVC (β, x�) didefinisikan sebagai 
fungsi pelanggaran. 

 
Pemilihan jenis fungsi penalti bertujuan untuk 
mendapatkan fungsi penalti yang optimum yaitu 
menghasilkan nilai optimum didalam daerah feasible 
dan mendekati nilai target. Selain itu, fungsi penalti 
dapat mempercepat proses optimasi dalam mencapai 
nilai optimum.  
 
Dalam studi kasus optimasi fungsi penalti dicoba 
dengan menerapkan fungsi polinomial orde tinggi jika 
sudah algoritme optimasi mengarah pada batas solusi 
tidak layak, sehingga diharapkan pada daerah batas 
kendala, fungsi objektif masih kontinu dan dapat 
diturunkan, seperti bentuk berikut, 

eval (x�) = f(x�) ×  �𝐿 − 𝐿𝑠𝑝𝑎𝑛�
4
 

Jika  �𝐿 − 𝐿𝑙 � ∙ (𝐿𝑢 − 𝐿𝑚)  ≤ 0 
 
Fungsi penalti terhadap karakteristik ini perlu 
diterapkan di samping kendala batas, karena dalam 
aplikasinya, terdapat rentang harga karakteristik yang 
dibolehkan berdasarkan spesifikasi produk. 
 
Rumusan Masalah Optimasi 
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Studi kasus yang digunakan adalah penyelesaian 
permasalahan optimasi rem komposit dengan 
karakteristik optimasi multiobjektif, non-linear. 
Permasalahan optimasi terdiri dari 7 peubah input, 
yang merupakan komposisi (dalam %) dari ketujuh 
bahan penyusun rem komposit, dan 3 peubah output, 
yang merupakan tiga karakteristik penting dalam rem 
komposit.   
 
Fungsi objektif: 

( ) ( ) ( )∑
=

⋅







−=

3

1

2

1
i

ii
pi

t

i
i Pr

C
Cwfitness LMinMin  

 
Fungsi kendala: 

( )( ) ( )( ) ( )( ) 0 jika,4
≤−−−= LLL ii

u
i
l

ii
l

ii CCCCCCP  
 
dengan, i merupakan indeks yang mewakili 
masing-masing dari ketiga karakteristik material rem.  
Perhitungan bobot, w berdasarkan tiga alternatif 
seperti disampaikan pada sub bab Perumusan Fungsi 
Objektif. 𝐶𝑖 (𝐋)  dan 𝐶𝑡𝑖  adalah, masing-masing, 
karakteristik material prediksi berdasarkan parameter 
input L dan target optimasi; 𝐶𝑙𝑖  dan 𝐶𝑢𝑖  adalah, 
masing-masing, batas bawah dan batas atas dari 
karakteristik. 
 
Teknik Optimasi 
Penggunaan teknik optimasi yang sesuai untuk 
penyelesaian tiap permasalahan optimasi didasarkan 
pada karakteristik permasalahan optimasi. Berdasarkan 
bentuk bentangan fungsi, permasalahan optimasi 
dibagi menjadi dua yaitu unimodal (convex dan 
concave) dan multimodal (noisy).  U nimodal adalah 
permasalahan yang memiliki 1 titik optimum 
sedangkan multimodal memiliki banyak titik optimum 
(optimum lokal dan global). Di smaping itu, 
permasalahan optimasi juga didasarkan pada ada 
tidaknya kendala, jumlah fungsi objektif yang 
digunakan, nilai variabel perancangan yang akan 
diinginkan, bentuk nilai optimum yang didapat, dan 
ekspresi fungsi persamaannya. Kesemuanya itu 
memiliki metode-metode khusus dalam solusi 
penyelesaiannya. 
 
Beberapa teknik optimasi numerik konvensional 
berikut ini dapat digunakan untuk penyelesaian 
masalah optimasi unimodal, antara lain 
steepest-descent, conjugate gradient, sequential 
quadratic programming (SQP), pattern search, linear 
approximation methods (Lim, 2009; Vanderplaats, 
1984; Arora, 1989) Satu alasan yang memungkinkan 
di balik penggunaan metode tersebut secara luas 
adalah jaminan konvergensi teoretik yang kuat, paling 
tidak untuk optimum lokal. Secara umum, metode 
optimasi konvensional bersifat pasti (deterministik), 
dimana sebuah titik awal yang baik dapat 

mendapatkan harga optimum global yang diinginkan. 
Namun, untuk kasus lain proses optimasi terkadang 
terjebak pada optimum lokal. Ketidaktersediaan 
informasi kemiringan (gradient) yang akurat, 
gangguan (noisy) dan multimodal landscapes juga 
dapat mengurangi tingkat efektivitas dibanyak 
permasalahan dunia nyata.  
 
Dalam beberapa dekade terakhir ini telah banyak 
dikembangkan teknik optimasi baru, yang mengarah 
pada optimasi stokastik, yang masuk kategori metode 
Evolutionary Algorithm (EA), diantaranya Genetic 
Algorithm (GA) dan Memetic Algorithm (MA) [2-3]. 
Optimasi stokastik dapat menunjukkan hasil baik 
untuk permasalahan berdimensi tinggi, multimodal, 
berkendala dan tidak kontinu atau tidak bisa 
diturunkan. Untuk meningkatkan kemungkinan proses 
optimasi mengarah pada optimum global, pencarian 
fungsi objektif yang optimum dilakukan dengan proses 
iterasi yang dilakukan dengan melakukan beberapa 
kali proses running optimasi dengan nilai target yang 
sama untuk setiap alternatif fungsi objektif. Fungsi 
objektif yang optimum adalah fungsi objektif yang 
mendekati nilai target dengan beda terkecil di antara 
sekumpulan running. Metode ini dikembangkan lebih 
lanjut dengan menggabungkan metode Genetic 
Algorithm (GA), yang merupakan metode stokastik 
dan Sequential Quadratic Programming (SQP), yang 
merupakan metode deteministik, yang dinamakan 
metode Memetic Algorithm (MA). Dengan metode 
baru ini, diharapkan pencarian nilai optimum dapat 
mengarah ke solusi optimum global, yang selanjutnya 
akan dilanjutkan dengan pencarian solusi lokal untuk 
meningkatkan kepresisian. Dalam kasus perancangan 
rem komposit ini, teknik GA akan diterapkan dengan 
rumusan masalah optimasi seperti yang dirangkum di 
bawah ini. 
 
HASIL DAN PEMBAHASAN 
 
Pengaruh faktor ketidakpastian dari basis data 
terhadap hasil optimasi menggunakan metodologi 
perancangan berbasis pengetahuan dianalisis melalui 
simulasi kasus. Ketidakpastian disimulasi dengan cara 
memberikan kesalahan secara acak pada hubungan 
antara parameter input dan output yang telah 
didefinisikan terlebih dahulu, seperti pada persamaan 
berikut. 

( ) ( ) xRfC i ⋅+= LL  
 
dengan, x adalah angka pseudo-random, dan R adalah 
konstanta simulasi kesalahan. Untuk kepentingan 
simulasi, dicoba harga R sebesar: 0 (tidak ada 
kesalahan); 0,1; 0,5; 1; 5. 
 
 
Tabel 1 menunjukkan pengaruh dari faktor kesalahan, 
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R, terhadap standard of error of estimate dari basis 
data simulasi untuk masing-masing karakteristik 
material.  
Pasangan input-output yang mengandung komponen 
kesalahan simulasi tersebut selanjutnya dianggap 
seoalah-olah sebagai basis data hasil pengujian yang 
mengandung kesalahan acak dengan standard of error 
estimate sebagaimana tertera pada Tabel 1.  
 

Tabel 1. Standard of error estimate (%) dari basis data 
untuk masing-masing konstanta simulasi kesalahan (R) 

 
Parameter Konstanta simulasi error (R) 

0 0,1 0,5 1 5 
Crush strength 0,0 9,0 9,3 9,9 25,2 
Cross breaking 
strength 

0,0 8,7 10,7 12,1 24,2 

Koefisien 
Gesek 

0,0 18,2 55,7 109,1 665,5 

 
Metode optimasi yang digunakan dalam simulasi ini 
adalah metode Memetic Algortihm (MA). Hasil error 
yang ditampilkan pada grafik adalah hasil parameter 
output ( )LiC  dengan penambahan error simulasi 
buatan yang dianggap sebagai error yang dihasilkan 
pada basis data.   
 

Tabel 2. Studi kasus simulasi optimasi, target dan hasil 
optimasi tanpa mempertimbangkan faktor ketidakpastian 

dalam basis data 
  

Karakteristik material Studi Kasus Simulasi 
1 2 3 

Target: 
Crush strength (N/cm2) 6000 5000 6000 
Cross breaking strength (N/cm2) 3000 3000 4000 
Friction coefficient 0,180 0,180 0,300 
Hasil Optimasi (tanpa mempertimbangkan faktor 
ketidakastian): 
Crush strength (N/cm2) 6008 5089 6060 
Cross breaking strength (N/cm2) 2985 2825 4090 
Friction coefficient 0,182 0,182 0,302 

 
Simulasi proses optimasi dilakukan dengan 
memberikan target harga karakteristik material untuk 3 
kasus berbeda, seperti pada bagian atas Tabel 2. Jika 
basis data tidak mengandung kesalahan acak, proses 
optimasi akan menghasilkan solusi optimum seperti 
pada bagian bawah Tabel 2. Hasil ini sebagai baseline 
perbandingan terhadap kasus-kasus dengan kesalahan 
acak pada basis data, seperti disimulasikan dengan 
adanya konstanta simulasi error, R, pada Tabel 1. 
Meskipun tidak terdapat kesalahan acak pada basis 
data, proses optimasi sudah memiliki kesalahan dari 
target optimasi, mulai dari 0,13% hingga 5,8%. 
Dengan basis data yang memiliki kesalahan acak yang 
dismulasikan besarnya menggunakan konstanta 
simulasi error, R, maka kesalahan akibat optimasi juga 
akan membesar. Kesalahan total dari keseluruhan 

proses optimasi akan membesar dengan membesarnya 
ketidakpastian yang terkandung dalam basis data, 
seperti diharapkan. Gambar 2 hingga Gambar 4 
menunjukkan hubungan antara nilai standard of error 
estimate, terhadap kesalahan total dari proses optimasi 
untuk ketiga kasus simulasi, seperti pada bagian atas 
Tabel 2. Untuk kasus standard of error of estimate 0, 
kesalahan total optimasi dapat diartikan kesalahan dari 
teknik optimasi. Dalam contoh ini, konstanta faktor 
simulasi error lebih dari 0,1 sudah menyebabkan 
standard of error estimate yang tinggi untuk kasus 
friction coefficient. 
 

 
Gambar 2. Pengaruh standar of error estimate terhadap 

kesalahan optimasi pada karakteristik Crush strength  
 

 
Gambar 3. Pengaruh standar of error estimate terhadap 

kesalahan optimasi pada karakteristik Cross Breaking 
Strength  

 

 
Gambar 4. Pengaruh standar of error estimate terhadap 

kesalahan optimasi pada karakteristik coefficient of friction  
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Dengan pengembangan metodologi ini, ketidakpastian 
dalam basis data dapat dicerminkan ke hasil optimasi. 
Sebagai contoh untuk kasus simulasi 2, dan dengan 
basis data yang mengandung kesalahan dengan 
standard of error estimate untuk parameter output 
cross breaking strength 8,7%, maka kesalahan total 
akibat proses optimasi dan ketidakpastian dalam basis 
data adalah 16,2%. Jika hasil optimasi yang dihasilkan 
dari proses optimasi adalah 2825 N/cm2, maka 
kesalahan tersebut berharga 458 N/cm2. Dari informasi 
ini, dapat dituliskan hasil keseluruhan proses optimasi 
dengan mnggunakan metodologi perancangan berbasis 
pengetahuan yang memperhatikan ketidakpastian 
sebagai 2825 ± 458 N/cm2. Hasil dari penelitian ini 
dapat bermanfaat untuk menunjukkan variasi 
kesalahan dari hasil optimasi, sehingga pengguna 
mendapat informasi kemungkinan kesalahan dari 
proses optimasi akibat ketidakpastian pada basis data 
perancangan dari pengujian.  
 
Dalam beberapa kasus, target optimasi merupakan 
rentang dari suatu nilai, bukan nilai tunggal, misalnya 
dalam kasus spesifikasi produk rem yang 
mensyaratkan friction coefficient dari 0,18 – 0,23. 
Dengan metodologi perancangan berbasis pengetahuan, 
target optimasi dapat didefinisikan pada suatu nilai 
tertentu di antara rentang tersebut, dan setelah hasil 
optimasi dengan rentang kesalahan yang diketahui, 
maka pengguna dapat mengetahui apakah hasil 
tersebut masih masuk dalam rentang pesifikasi produk 
yang dibolehkan.  
 
 
KESIMPULAN 
 
Perancangan rutin merupakan tipe perancangan 
dengan permasalahan  yang dapat didefinisikan 
dengan baik (well-defined problems). 
Permasalahan perancangan rutin adalah mencari 
parameter perancangan yang menghasilkan solusi 
optimum. Metodologi perancangan berbasis data, 
berpotensi diaplikasikan secara efektif untuk 
perancangan tipe rutin, yang memerlukan kecepatan 
dan akurasi. Dalam makalah ini, metodologi 
perancangan berbasis pengetahuan telah memasukkan 
usulan pengembangan yang memperhitungkan 
ketidakpastian dalam basis data perancangan, yang 
biasanya berasal dari pengujian empirik. 
 
Hasil optimasi sudah memasukkan faktor 
ketidakpastian, dalam bentuk  y ± ey, dengan y 
adalah hasil optimasi dan ey adalah variasi 
kesalahan akibat ketidakpastian dalam basis data 
perancangan yang diperoleh dari pengujian 
empirik. 
Dari observasi melalui simulasi, diperoleh 

hubungan positif antara besarnya ketidakpastian 
dalam basis data perancangan dengan kesalahan 
pada hasil optimasi secarakeseluruhan. 
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