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Abstract

Vehicle suspension plays important roles in vehicle performance. The main function of the vehicle suspension is
to improve ride and handling performance. The other important requirements need to be considered in the controller
design are suspension def ection and actuator saturation. However, these requirements are conf icting. For example, to
obtain better ride comfort it is usually required larger control input and larger suspension def ection, but the actuator
that deliver the control signal have a limitation which is commonly known as actuator saturation. There is also a
structural constraint that limits the suspension def ection. Most of the vehicle active suspension control strategies deal
with actuator saturation and limitation of suspension def ection by keeping the control signals small, until the point
where constraint is not met at all. The advantage of this approach is allowing one to use the unconstrained design
methods and hence a linear analysis of the problem can be carried out. However, this is achieved at the cost of reducing
achievable performance since we expect high performance to be associated with acting on or near constraints. In this
study, an alternative approach to the vehicle active suspension system is studied. In this approach, some separation in
the controller such that one part is devoted to achieve nominal performance and the other part is devoted to constraint
handling is performed. This control strategy involves a two-step design procedure. Namely, a state feedback controller
is f rst synthesized for a linear system ignoring saturation and state constraint. Then, the anti-windup and override
compensator is designed such that, when saturation occurs or state constraints limits is exceeded, this compensator
becomes active to recovers as much as possible the performance lost. Local control design technique based on the
circle criterion and L2 gain performance is used for the anti-windup and override compensator synthesis. A quarter
car model is considered in this study and the effectiveness of the proposed approach is shown by a numerical example.
The application of the override control for active vehicle suspension system is studied. It is shown that the occurrence
of the suspension hits it def ection limits and control input reaches the saturation bound can be minimized by override
and anti windup control strategy.
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Introduction

More and more systems are involved in today cars
to guarantee both safety (e.g. ABS, ESP, etc) and com-
fort (e.g. suspension control, cabin noise control, etc).
Concerning the vehicle comfort and road holding abil-
ity, the suspension system has the major roles to provide
1) isolating passengers from vibration and shock aris-
ing from road roughness (ride comfort); 2) suppressing
the hop of the wheels so as to maintain f rm and unin-
terrupted contact of wheels to road (good handling or
good road holding); and 3) keeping suspension strokes
within an allowable maximum (Chen and Guo, 2005).
The most important objective for the vehicle suspen-
sion system is the improvement of the ride comfort
(Sun et al., 2011) and a signif cant control input is of-
ten necessary to obtain better performance. However,
in practice, the actuators which deliver the control sig-
nal are always subject to limits in their magnitude which
is commonly known as actuator saturation. In addition,
there is also a structural constraint that limit the suspen-
sion def ection.

There are several ways of dealing with the control
and output constraints. One can use the control and out-
put constraints as optimization constraints such as used

in (Chen and Guo, 2005; Sun et al., 2011). This leads
to a quite signif cant linear programming problem and
a controller can be designed such that it ensures that
the state always belongs to the maximum output ad-
missible set. The f nite frequency H∞ control has been
proposed in (Sun et al., 2011) which shows that an im-
provement in ride comfort is obtained compared with
the entire frequency H∞ control. Although the afore-
mentioned controllers have been designed so as to main-
tain the suspension def ection in a certain range based
on a regulated road disturbance, the control input and
the suspension def ection might reach the limitation due
to various road shapes. One way of incorporating out-
put constraints into controller design is using model pre-
dictive control (MPC) strategies. However, the MPC
approach is generally expensive in terms of computa-
tion (Turner and Postlethwaite, 2002). The other way of
dealing with the output constraints is override control
(Turner and Postlethwaite, 2002, 2004; Park and Youn,
2003), and in this study, we consider the override con-
trol to tackle the problem of the output constraints.

In (Wasiwitono and Saeki, 2011) an alternative ap-
proach for the vehicle active suspension system is pro-
posed. A separation in the controller such that one
part is devoted to achieve nominal performance and the
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Fig. 1: Quarter car model

other part is devoted to constraint handling is performed.
This is the approach taken in anti-windup compensa-
tion (Tarbouriech and Turner, 2009). It is shown that the
proposed control approach has the potential benef t in
achieving the best possible ride comfort. Based on the
two-step design procedure, in this study, the combina-
tion of override control and anti-windup control strategy
are considered to deal with output constraint and control
input constraint. Local control design technique based
on the circle criterion and L2 gain performance is used
for the anti-windup and override compensator synthesis.

Further, the paper is organized as follows. Section
II describes the quarter car system and problem formula-
tion. Section III describes the override and anti-windup
compensator synthesis and a numerical example is given
in Section IV to show the usefulness of the proposed
control strategy.

Problem Formulation

The quarter car model shown in Fig. 1 is consid-
ered in this study. The quarter-car model is very often
used for the vehicle suspension analysis and design, be-
cause of its simplicity yet capture many important char-
acteristics of the full model. In Fig. 1, ms is the sprung
mass, which represents the car chassis; mu is the un-
sprung mass, which represents mass of wheel assembly;
cs and ks are damping and stiffness of the suspension
system, respectively; kt and ct stand for compressibil-
ity and damping of the pneumatic tire, respectively; zs
and zu are the displacements of the sprung and unsprung
masses, respectively; zr is the road displacement input;
and u is the active input of the suspension system.

Def ne the following state variables:
x1 = zs−zu, x2 = zu−zr , x3 = żs, x4 = żu (1)

where x1 denotes the suspension def ection, x2 denotes
the tire def ection, x3 denotes the sprung mass veloc-
ity, and x4 denotes the unsprung mass velocity. Fur-
ther, def ne the disturbance input as d = żr , and xp =
[

x1 x2 x3 x4
]T , then, by applying Newton’s sec-

ond law of motion and using the static equilibrium po-
sition as the origin, the state-space form of the vehicle
suspension system can be written as

ẋp = Apxp+Bdd+Buu (2)
where xp ∈ R

np is the suspension system state, d ∈ Rnd is
the disturbance input,u ∈ Rnu is the control input, and
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(3)

In this study the application of the override and
anti-windup control strategy for an active vehicle sus-
pension as shown in Fig. 2 is studied. In this Figure yc
is the constrained output, φu and φy is deadzone function
to control the activation of the compensator Λ. Further,
by def ning

Cyl =
[

Cyc
0
]

, Dyu =
[ 0

Inu

]

(4)

the closed-loop system shown in Fig. 2 can be repre-
sented as that shown in Fig. 3, with the plant P is de-
scribed as

ẋp = Apxp+Buu+Bdd (5)
z1 = Cz1xp+Dzu1u+Dzd1d (6)
yl = Cyl xp+Dyuu (7)

Assume that the linear control K has been de-
signed, let now focused on the controlled output for the
design of the override and anti-windup compensator Λ.
The most important objective of the active vehicle sus-
pension is the improvement of the ride comfort, hence,
the sprung mass acceleration z̈s is choosen as perfor-
mance output and we have

Cz1 =
[

−
ks
ms

0 −
cs
ms

cs
ms

]

(8)

Dzu1 =
[

1
ms

]

, Dzd1 =
[ 0 ] (9)
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Fig. 4: Nonlinear feedback system with sector condition

Furthermore, because the control objective of the over-
ride and anti-windup control is to avoid the suspension
reach its stroke limitation and preventing the actuator
from saturation, beside the aforementioned performance
objective, we want to minimize

z2 = Λv (10)

therefore, we will consider the next z

z=
[

W1z1
W2z2

]

(11)

The constant weights W1 and W2 are used for the tuning
of the balance between the ride comfort requirements
and the minimization of z2. Thus the problem is to min-
imize γ subject to

‖z‖2 < γ ‖d‖2 (12)

where z is def ned by (11) with internal stability.

Override and Anti-Windup Compensator Syn-
thesis

A state feedback control system is considered is
considerd in this study and therefore, the control signal
u can be described as

u= Kxp−Λv (13)

Def ne

Cz=

[

W1Cz1
0

]

, Dzu=

[

W1Dzu1
0

]

Dzd=

[

W1Dzd1
0

]

, Dzv =

[ 0
W2Inu

] (14)

then, the system in Fig. 3 can be represented as that of
Fig. 4, with the system G is described by

ẋp =
(

Ap+BuK
)

xp−BuΛv+Bdd (15)
z = (Cz+DzuK) xp− (Dzu−Dzv)Λv+Dzdd (16)

yl =
(

Cyl +DyuK
)

xp−DyuΛv (17)

Further, by considering that φ(·) satisf es the sec-
tor condition (Khalil, 1996) in the f nite interval [−Ξ,Ξ]
with

Ξ = (1/ (1− κ))yl
then the following inequality condition holds

vTX (v− κyl) ≤ 0 (18)

and the next theorem guarantees the L2 gain condition
(12) for the nonlinearity that satisf es (18).

Table 1: Quarter-car model parameters
Notation Descreption Value

ms Mass of car chassis 320 kg
mu Mass of wheel assembly 40 kg
ks Suspension stiffness 18 kN/m
kt Tire stiffness 200 kN/m
cs Suspension damping 1 kNs/m
ct Tire damping 10 Ns/m

zmax Max. suspension def ection 0.1 m
umax Saturation bound 1.5 kN

Theorem 1. For a given κ, if there exist a positive-
definite symmetric matric Q∈ Rnp×np, a diagonal matrix
T = diag

[

t1, t2, · · · , tnu+nyc

]

> 0, and a scalarγ > 0 that
satisfies the next matrix inequality
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(19)
then, the feedback system shown in Fig. 4 with override compen-

satorΛ = NT−1 is asymptotically stable and theL2 gain from d to
z is less thanγ when the condition|yl | 6 (1/ (1− κi ))yl(i)(sat), i =
1, 2, . . . , nv holds.

Proof. See Appendix A �

This design problem is an LMI problem with re-
spect to the variables Q, N, γ, T, and therefore it can be
solved easily by a numerical optimization method.

Numerical Example

The quarter-car model parameters are listed in Ta-
ble 1. We assume that the linear controller K has been
designed, and for the current study we consider the state
feedback controller K reported in (Sun et al., 2011) that
use less restrictive constraints compared with that re-
ported in (Chen and Guo, 2005). The corresponding
state feedback controller is given by

K = 104 [0.5033 −1.3155 −0.5329 −0.0547] (20)
Figure 5 shows the frequency response from the

disturbance to the body acceleration and suspension
def ection for the case of passive suspension and ac-
tive suspension with state feedback control reported
in (Chen and Guo, 2005; Sun et al., 2011). It can be
clearly seen that the state feedback controller reported
in (Sun et al., 2011) yields the least value of H∞ norm
over the frequency range 1 ∼ 8 Hz compared with the
passive system and the state feedback controller reported
in (Chen and Guo, 2005). However, in term of suspen-
sion def ection the state feedback controller reported in
(Sun et al., 2011) yields larger value especially at lower
frequencies.

Let us now consider the case of an isolated bump
in a road surface. The corresponding disturbance input
is given by (Sun et al., 2011)

d =















Am
2 (1−cos(2π f t)) i f 0 ≤ t ≤ 1

f

0 i f 1
f < t

(21
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Fig. 5: Frequency response from disturbance to body acceleration and suspension def ection (dotted line: passive
suspension; dashed line: state feedback control (Chen and Guo, 2005); solid line: state feedback control (Sun et al.,
2011))

where Am represents the amplitude of the bump and
f is disturbance frequency. Fig. 6 shows the plots
of body acceleration, suspension def ection and con-
trol input for the case of disturbance frequency 1 Hz
and bump amplitude 0.1 m. It can be seen that the
ride comfort by state feedback control (Sun et al., 2011)
is better compared with that by state feedback control
(Chen and Guo, 2005). However, the improvement in
the ride comfort requires a larger actuator force and
larger suspension def ection. Fig. 7 shows the plots of
body acceleration, suspension def ection and control in-
put for the case of disturbance frequency 1 Hz and bump
amplitude 0.16 m. It can be seen in this Figure that the
ride comfort by state feedback control (Sun et al., 2011)
is deteriorated caused by the suspension hits it limits, at
around 0.5 s.

To overcome this problem, we add override and
anti-windup compensator and based on Theorem 1, we
synthesize the compensator Λ by setting κ = 1, W1 = 250
and W2 = 50, and obtain the following result

Λ =
[ 2.55657 −18.72049 ] (22)

Since the control input saturation is ±1.5 kN and sus-
pension def ection limit is ±0.1 m, we choose the dead-
zone limit φu = ±1 kN and φy = ±0.05 m, respectively.
Fig. 8 shows the plots of body acceleration, suspension
def ection and control input for the case of disturbance
frequency 1 Hz and bump amplitude 0.16 m with pro-
posed control strategy. It can be seen that the improve-
ment in ride comfort is obtained.The suspension def ec-
tion and control input is reduced to be bellow the allow-
able bound.

Further, to compare effectiveness of the proposed
control strategy with standard state feedback control
(Chen and Guo, 2005; Sun et al., 2011) at different dis-
turbance frequencies, Fig. 9 shows the plots of body
acceleration, suspension def ection and control input for
the case of disturbance frequency 4 Hz with bump am-
plitude 0.11 m. It can be seen from these Figure that
both the state feedback control (Chen and Guo, 2005;
Sun et al., 2011) hit the suspension def ection limit at
around 0.1 s. Whilst, the active suspension system with
proposed control strategy does not.

Conclusion

The application of the override and anti-windup
control for active vehicle suspension system is studied.
It is shown that the occurrence of the suspension hits it
def ection limits and control input reaches the saturation
bound can be minimized by the proposed control strat-
egy. Furthermore, by setting M = KQ in (19) it is pos-
sible to synthesize the state feedback controller K and
compensator Λ simultaneously. It is our future work to
show the usefulness of such simultaneous design algo-
rithm.

A Proof of Theorem 1

Consider a quadratic Lyapunov function

V
(

xp

)

= xT
pPxp, P= PT > 0, P ∈ Rnp×np (23)

In order to show that the closed loop system is asymp-
totically stable and the L2 gain from d to z is less than γ,
we may show that the Lyapunov function (23) satisf es
the next dissipation inequality

dV
dt
< γdTd−

1
γ

zTz (24)

By using the sector condition (18) and the S-
procedure, we obtain

dV
dt
+

1
γ

zTz−γdTd−2vTX (v− κyl) < 0 (25)
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p vT dT

]T
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(26)
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Fig. 6: Bump response for the case of disturbance frequency 1 Hz and amplitude 0.1 m (dotted line: passive sus-
pension; dashed line: state feedback control (Chen and Guo, 2005); solid line: state feedback control (Sun et al.,
2011))

Since (26) must hold for all xp, v, and d, the matrix
P> 0 must satisfy the next constraint
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Applying the Schur complement to (27), we obtain
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Applying a simple congruence transformation
block-diag
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to (28) and def ne Q = P−1,
T = X−1, we have
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Def ne N = ΛT then (29) can be written as (19)
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Fig. 7: Bump response for the case of disturbance frequency 1 Hz and amplitude 0.16 m (dotted line: passive sus-
pension; dashed line: state feedback control (Chen and Guo, 2005); solid line: state feedback control (Sun et al.,
2011))
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Fig. 8: Bump response for the case of disturbance frequency 1 Hz and amplitude 0.16 m (dashed line: state feedback
control (Chen and Guo, 2005); solid line: state feedback control (Sun et al., 2011)); dash-dotted line: proposed control
strategy)
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Fig. 9: Bump response for the case of disturbance frequency 4 Hz and amplitude 0.11 m (dashed line: state feedback
control (Chen and Guo, 2005); solid line: state feedback control (Sun et al., 2011)); dash-dotted line: proposed control
strategy
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