

New Trend in Modern Vehicle Transmission “A Brief Review of New Transmission Technology”

Mohammad Adhitya

Department of Mechanical Engineering
University of Indonesia
Kampus Baru UI, Depok 16424
West Java, Indonesia

Telephone: +62-021-7270032, Fax: +62-021-7270033, E-mail: madhitya@eng.ui.ac.id

ABSTRACT

Vehicle transmission is definitely needed by the vehicle for two reasons. The first is to damp the engine vibration for general drive train system and the second is to manipulate the engine torque that available in limited range of engine rotation from their idle rpm to their upper limit rpm, to meet the torque requirement as a traction force on the wheel that move the vehicle from rest until vehicle maximum speed. The transmission method to satisfy this second requirement is by creating several gear ratios that can change the engine rpm into suitable wheel rpm in certain condition such as in initial move (slow moving) or cruising in the high way (fast moving). However the clutch is needed to control the condition where the vehicle is completely at rest but the engine is stay running and in the other important condition is at transition stage of moving from rest. In new era of modern technology vehicle, transmissions also designed to meet the requirement of lower the fuel consumption and to reduce the vehicle exhaust emission. In this paper will be reviewed the most advanced vehicles transmission that used by modern vehicle now a days.

Keywords: *Vehicle Transmission, Automatic Transmission, Double Clutch Transmission, Continuously Variable Transmission.*

1. Introduction

Vehicle transmission is definitely needed by the vehicle for two reasons. The first is to damp the engine vibration for general drive train system and the second is to manipulate the engine torque that available in limited range of engine rotation from their idle rpm to their upper limit rpm, to meet the torque requirement as a traction force on the wheel that move the vehicle from rest until vehicle maximum speed. The transmission method to satisfy this second requirement is by creating several gear ratios that can change the engine rpm into suitable wheel rpm in certain condition such as in initial move (slow moving) or cruising in the high way (fast moving). However the clutch is needed to control the condition where the vehicle is completely at rest but the engine is stay running and in the other important condition is at transition stage of moving from rest.

From figure 1.b we can see that curve a, b, c and d are the manipulated engine torque curve by multiplying the engine torque curve by factor that principally deal with by the 1st, 2nd, 3rd or 4th gear ratio available. This

factor is to convert from angular velocity to linear velocity which come from the equation concerning the final drive ratio in differential, dynamic wheel radius which are both of these value are constant and the gear ratio value that depend on the selected gear. The manipulated engine torque curve used here is in condition of max engine load or wide open throttle.

From the same figure we can see also that the engine torque that transferred to the wheel is continuously decreased in higher gear selected as the vehicle speed increase. Area “a” is the area where the clutch system plays a role in transition vehicle condition from rest to move.

Vehicle automatic transmission is commonly called as simply as automatic transmission. However due to many developments of vehicle transmission in recent year, have arising many terminologies used to describe the automatic transmission mechanism, which will briefly clarify in this following paragraph. Automatic transmission terminologies itself nowadays became very specific to describe one from several type of automatic transmission available in the market.

ISBN: 978-602-97742-0-7

MIV-79

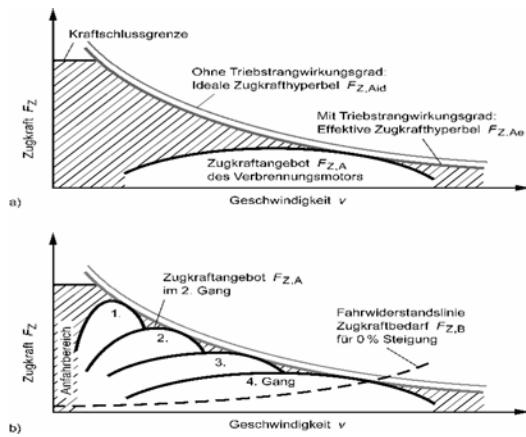


Figure 1. The “Traction Force-Speed” diagram

So called automatic transmission caused by the free of driver act in gear shifting like normally they did on the manual transmission vehicle. Generally the automatic vehicle has only two pedals in the cabin instead of three by removal the need of clutch pedal.

2. Automatic Transmission (AT)

The main difference between these automatic transmissions with the manual transmission is noticed by the use of torque converters instead of the friction clutch that can guarantee the engine remain running although the vehicle is not in motion. The development of the vehicle automatic transmission results in the general construction of so called automatic transmission (AT) which are mainly using the torque converter and several set of planetary gears, as shown in figure 2.

Figure 2. Automatic transmission (AT) named “7G-Tronik” from Mercedes-Benz

3. Automated Manual Transmission (AMT)

In near recent years there are some developments on the basically manual transmission construction, which are using the friction clutch and several pair of gears, so

it can be operated automatically called automated manual transmission (AMT). This technology of the AMT is coming from the race world, although they are not fully automatic in the actual race, but rather to remove the need of clutch pedal action in gear shifting process.

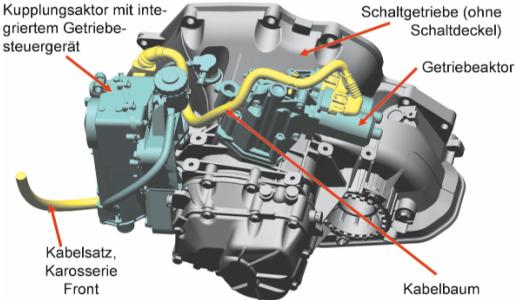


Figure 3. AMT named “easytronic” from General Motor Europe

This AMT technology is well applied to the serial mass vehicle production by implementing the control device so it can be operated fully automatic like regular AT. Thanks to hydraulically controlled actuator mechanisms that conveniently replace the need of driver action in shifting and in declutch or also known as shift by wire, with the additional advantages of the responsive friction clutch action rather than slip phenomena caused by the torque converter. This AMT as shown in figure 3 is look very similar to manual transmission despite the existed control module and automatic actuator mechanism.

4. Dual Clutch Transmission (DCT)

Again from the race world technologies which need to shift the gear extremely fast, there are continues development on the AMT scheme by using two clutch mechanisms which one clutch serve and only connected to the odd gear and the other to the even gear. This idea basically like combining two different gearboxes which is odd gear gearbox and even gear gearbox into a very compact one gearbox construction. This technology is called dual clutch transmission (DCT) as shown in figure 4 below from Volkswagen with its brand name DSG which stand for “Direktschaltgetriebes” in German language mean direct shift transmission.

Figure 4. DCT transmission named DSG from Volkswagen.

The rapid shifting time take place due to the readily available pre-select gear (2/even gear for example) that already connected to the disengage clutch that can rapidly receive torque flow from other engaging clutch (which serve the 1/odd gear for example) that previously engage to the engine when shifting is done. Comparing to the shifting process on AMT, the only one clutch should disengage first, following than by select the next intended gear (of course after off from the previous selected gear) and finished by the engaging the only one clutch again. In simple words there is only one step in DCT gear shifting, which is shift the torque flow from one engaging clutch to the other disengage clutch that already connected to selected gear, but it takes several steps in AMT which are disengage the only one clutch, off from the selected gear, select the new intended gear and finished by engaging the only one clutch again. This is why DCT become popular in high performance car such as Bugatti Veyron which seriously pays attention on shifting speed.

5. Continuously Variable Transmission (CVT)

Apart from AT, AMT and DCT, there is one more vehicle automatic transmission available in the market called continuously variable transmission (CVT) which shown in figure 5 below. This kind of automatic transmission have an enormous different concept in mechanism with the AT, AMT and DCT, by using the belt and pulley construction rather than a several set of gears as a transmission mechanism, although some CVT also use the different construction like using the cone and ring rather than using the belt and pulley as shown in figure 6. This transmission type generally using the torque converter as an engine-transmission coupling device like the automatic transmission (AT) use beside several others also use the friction clutch like CVT named multitronic from Audi.

Figure 5. CVT named “multitronic” from Audi which Installed

in A4 and A6.

The main advantages of this CVT is the free of the transmission gear ratio combination can be managed and that is why the terminology of “continuously” used, to express the ability of this transmission to manage several gear ratio without necessarily exact gear ratio combination selected or infinitely variable transmission ratios can be employed between established minimum and maximum rotation ratio, the CVT also known as step less automatic transmission due to this phenomenon. This kind of transmission produce new challenge to the control engineering to design the appropriate transmission ratio that can satisfy the fuel consumption and drive ability over commonly fix gear ratio transmission or so called the discrete-ratio transmission. Some methodology to answer this challenge is developing in [71]. Nevertheless CVT is not covered in this report concerning the research area of the Institute is not including this type of vehicle automatic transmission.

Figure 6. Cone-ring CVT transmission.

Like other relatively new automatic transmission, most of CVT available on market also provide by manually shift operated option to meet some of enthusiast driver wants.

6. Automatic Transmission Shifting

Shifting in automatic transmission is controlled by Transmission Control Unit (TCU) concerning several parameters input. Those inputs will be calculated and noticed by the TCU as a control parameter to decide when the gear shifting taking place and how.

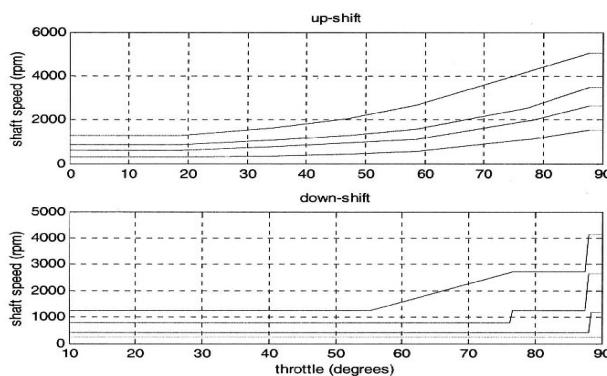


Figure 7. Gear shifting map of automatic transmission.

Generally TCU programmed for gear shifting based on shift map concerning to the vehicle speed and the throttle open position as engine load as shown in figure 7 above. It is shown that up-shift have different mode with down-shift and special shifting treatment also exist in the way of kick-down or step the gas throttle pedal flat against the cabin floor. Several shift strategy are also programmed by the vehicle manufacturer in example is in downhill or uphill condition.

7. Control System

To improve the fuel efficiency, shift quality and vehicle reliability, modern automatic transmissions are using the electronic control called Transmission Control Unit (TCU). This TCU control the automatic transmission by energizing several combination of solenoid valve that regulate the hydraulic pressure to actuate the clutch/brake that hold the gear rest or allow it free to rotate.

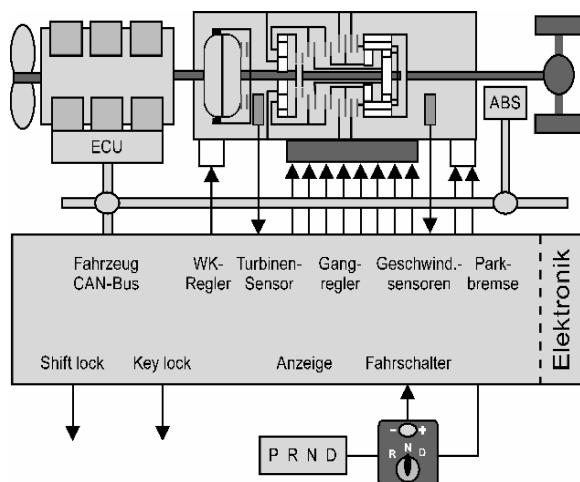
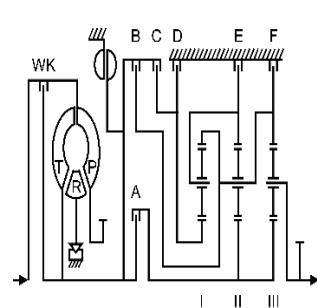


Figure 8. Scheme of electronic control in modern vehicle.

The AT control system receive several input parameter from vehicle general system which are engine torque, throttle position, engine rpm, transmission input and output rpm, vehicle speed, transmission oil temperature and several others to control which gear ratio will be automatically select by TCU.


All general input parameter data are sending by sensors to Control Area Network (CAN) that will be assessed by Engine Control Unit (ECU) or TCU to get the information. This CAN also transmit control instruction to the equipment.

8. Shifting Process

The gear shift process basically is a changing condition from several clutches/brakes from engage to disengage or in opposite fashion, in controlling the gear component of the planetary gear set to produce different gear ratio.

It is very depend on the design of the automatic transmission in producing several gear ratios, but normally there are two types of automatic transmission concerning the way to produce different gear ratio, which are "single transition shift" or "double transition shift". In single transition shift there is one pair of clutch/brake that while one clutch/brake changing their state from disengage to engage, the other clutch/brake changing from engage to disengage. On the other type, there are two pairs of clutch/brake which changing their state in shifting process. It is called transition due to the condition from stick to slip before it is completely free, or in the opposite fashion, from free condition to slip before it is completely stick or engage.

To ensure the good shifting process, the changing state of clutch/brake of both types (single and double transition shift) is occurred simultaneously in one time duration. So it can be said that for the single transition shift type for the example, while one clutch/brake is engaging, the other is disengaging simultaneously in the same transition time period. This condition also occurred in double transition shift type.

Gg	Kupplung						Bremsen			i
	A	B	C	D	E	F				
1	•								•	3,43
2	•							•		2,01
3	•						•			1,42
4	•	•								1,00
5		•					•			0,83
6		•						•		0,59
R								•		-4,84



Figure 9. Work characteristic of “Automatic Transmission”.

The transition period actually consist of two conditions which are torque phase and inertia phase for both engaging and disengaging clutch/brake. But the real condition is quite different between engaging and disengaging clutch/brake as shown in figure 9. In the simple words, the torque phase is the condition which engine torque still influencing the disengaging clutch/brake or on the other hand, engine torque starts to influence the engaging clutch/brake. Meanwhile the inertia phase is the second transition condition where inertia of each elements are still influencing in sliding clutch/brake before it is completely stick in the engaging clutch/brake or completely free for the disengaging clutch/brake. The different fashion as shown in figure 9 for engaging and disengaging clutch/brake occurs due to the different characteristic of build up pressure in engaging clutch/brake with pressure loss in disengaging clutch/brake beside the friction phenomena that also different for engaging or disengaging clutch/brake. This transition period actually plays important role in automatic transmission shift quality.

Due to the different fashion between engaging and disengaging clutch/brake produce the interruption or superposition between them. To satisfy the process, engine torque should be reduced in torque phase. Several researches concerning the shift characteristic as a system model have been made, as in [30], [31], [32], [79] for single transition shift and in [83], [97] for double transition shift.

9. Shift Quality

Shift process denoted as optimal if this process is felt comfort by the driver and passenger. There are two parameters in evaluate the shift quality which are the stability and rapidity. Stability mean that the jerk occurred in shifting process is low and rapidity means that the transition period is short thus this process is greatly influenced by the transition phase.

However these two parameters are contradictive one to another. To achieve high stability, the transition period should be longer that will decrease the rapidity beside also will produce large friction that can damage to the clutch/brake friction components. On the other hand, high rapidity will introduce large impact and high jerk.

There are several strategy applied to reach optimum shift quality. One of the strategy is by control the engine torque lower during torque phase as mentioned earlier beside the other strategy is by improving the shifting calibration process concerning the automatic transmission control system. Many research mainly in control area have been done for improve the shift quality like in [12], [22], [26], [45], [52], [78] and [86]. The researches that mentioned in chapter 3.2 mostly are also motivated to improve the shift quality.

Other vehicle comfort are further assessed using the human body model in response the vibration occurs in vehicle are also done in [60] and more related to the shift comfort also assessed by human neck model in which is reaction in [58].

10. Shift Strategy

Shift strategy is more related to the general behavior of the automatic transmission in vehicle operation or in their drivability. This theme is quiet challenging due to the duplicating of the human behavior in general in driving the vehicle. Shift strategy is more focusing on when the gear shifting taking place rather than how is the gear shifting that mainly discuss in shift quality in comfort.

The strategy including in the several road condition like uphill, downhill, combination on climbing and descending road, bend/turning road. On past era of automatic transmission many drivers are frustrated by the transmission behavior in always changing the gear reacting to the input parameter received by the system. Thanks to many research that have been done to upgrades the system intelligent like in [17], [64], [74] and [91] which are mostly using the Fuzzy logic approach to program the TCU result to the smart automatic transmission that even easier to use. The system now can match the inferred intentions of the driver under certain above mentioned road conditions. The fuzzy logic program also used to predict the road conditions from sensor outputs on vehicle acceleration

and the throttle opening angle.

However, to satisfy many enthusiast drivers that vary in judgment and behavior, some modern automatic transmission offer the manual gear shift operating option beside the fully automatic gear shift operation. This is because no matter how smart the system is, there is still some lack of several judge input parameter compare to the human which using their ability in see, hear and feel before taking a decision in gear shifting.

11. Summary

Transmission is absolutely needed by the vehicle to manipulate the available engine torque in certain rpm range to the torque needed by the vehicle as a traction force in the vehicle wheel. This requirement however accomplish by employing several gear ratio available in the transmission system. The other use of the transmission is also as an engine vibration damper in the vehicle drive train system.

To make the vehicle become easier to drive, some vehicles manufacture offering the automatic transmission in their product to the market next to the well-established and with economic selling price the manual transmission.

In the recent years have recorded that the selling of automatic transmission car has continually increased, thanks to improved automatic transmission that become more and more intelligent today beside also more automatic transmission type available to choose in the market that meet some specific market demand such as the high fuel efficiency or sport character.

There is several kind of automatic transmission available in the markets today which are AT, AMT, DCT and CVT. Each of it has their own advantages beside also their disadvantages. AT are relatively the oldest type of automatic transmission that became quite established in their development and now are even available in 8 speed. AMT and DCT are relatively new development of the very established manual transmission structure with intelligent control and efficient actuator. The unique step less CVT automatic transmission also offers the superb ability in managing the transmission ratio to meet highest possible fuel efficiency as well as to the sport performance and become more popular in certain country.

Above all there are two automatic transmission characters that evaluate mainly by the customers. First is when the gear shift occurs in what road condition, which is related to the shift strategy and the second is how the gear shift occurs that greatly related to the shift comfort.

Many research and improvement have been developed to the transmission control system as a control program, the control actuator device and transmission mechanism to improve the quality in all area as mentioned in previous chapter. Related

researches such as the use of Fuzzy logic in control program, system modeling to study the transmission behavior, evaluating of the shift quality, all are to produce better shift strategy and quality.

It is not impossible that the automatic transmission vehicle will available in more and more economical price in the near future concerning to the better fuel efficiency offered and more market demand.

References

- [1] [Adachi](#), Kazutaka., Yoshimasa Ochi, Satoshi Segawa, Akira Higashimata: Slip Control for a Lock-up Clutch with a Robust Control Method. SICE Annual Conference in Sapporo, August 44, 2004, Hokkaido Institute of Technology, Japan pg 744-749.
- [2] [Ahlawat](#), R., H.K. Fathy, B. Leea, J.L. Steina and D. Jungb: Modeling and Simulation of a Dual-Clutch Transmission Vehicle to Analyze the Effect of Pump Selection on Fuel Economy. Vehicle System Dynamics 2009, 1-18.
- [3] [Ahlawat](#), Rahul, Hosam K. Fathy, Chengyun Guo, Byungchan Lee, Jeffrey L. Stein and Dohoy Jung: Effect of Pump Selection on Fuel Economy in a Dual Clutch Transmission Vehicle. 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009.
- [4] [Asahara](#), Norimi, Hideaki Otsubo, and Hiromichi Kimura: Development of Robust Servo System for Synchronous Shifting of a New Compact Five-Speed Automatic Transmission. 0-7803-0582-5/92©IEEE, 1992.
- [5] [Barasz](#), R. C. and S. R. Cikanek: Torque Fill-In for an Automated Shift Manual Transmission in a Parallel Hybrid Electric Vehicle. Proceedings of the American Control Conference Anchorage, AK May 8-10, 2002.
- [6] [Bastian](#), A., S. Tano, T. Oyama and T. Arnould: System Overview and Special Features of FATE: Fuzzy Logic Automatic Transmission Expert System. 0-7803-2461-7/95©IEEE, 1995. pg 1063-1070.
- [7] [Bastian](#), A., S. Tano, T. Oyama and T. Arnould: FATE: Fuzzy Logic Automatic Transmission Expert System 0-7803-2461-7/95©IEEE, 1995.
- [8] [Bastian](#), Andreas: Fuzzy Logic in Automatic Transmission Control. Vehicle System Dynamics, 24 (1995), pp. 389-400 0042-3 1 14/94/2304-389S6© Swets & Zeitlinger.
- [9] [Boehl](#), Jens: Effizierte abstimmung von automatikgetrieben, Schriftenreihe des Instituut fuer Fahrzeugtechnik TU-Braunschweig, 2007. ISBN 978-3-8322-6264-8.
- [10] [Brechter](#), Daniel.: MeMo: Eine offene Integrationsplattform zur modellbasierten Entwicklung von Fahrzeugsystemen. Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung der Würde eines Doktor-Ingenieurs. Dissertation 2008.
- [11] [Campbell](#), Richard., Douglas Brumm, Timothy Taylor, Brian Bock: Modulated Scatterer Microwave Telemetry Inside Automobile Engines and Transmissions. 0-7803-2009-3/94©IEEE, 1994. Pg 1914-1917.
- [12] [Choi](#), S. B. and J.K. Hedrick: Experimental Implementation of Sliding Controls on Automotive Engines. IEEE, ACC/WPI3, 1992.
- [13] [Dai](#), Zhenkun., Liu, Yanfang., Xu, Xiangyang., Wang Shuhan: The Application of Multi-domain Physical

System Simulation Method in the Study of Automatic Transmissions. 978-0-7695-3570-8/09©IEEE, 2009. DOI 10.1109/WCSE.2009.199 pg 504-508.

[14] **Decarlo**, Raymond A., Michael S. Branicky, Stefan Pettersson and Bengt Lennartson: Perspectives and Results on the Stability and Stabilize Ability of Hybrid Systems. Proceedings of the IEEE, Vol. 88, No. 7, July 2000 pg 1069-1082.

[15] **Fewkes**, Roy, David G. Hughes and Ivan E. Joseph: Diversification of Automatic Transmission Fluid. Technology JSL 1 4 4 3470265-6582.

[16] **Filippa**, Mariano, Chunting MI, John Shen and Randy C. Stevenson: Modeling of a Hybrid Electric Vehicle Power-train Test Cell Using Bond Graphs. IEEE Transactions on Vehicular Technology, Vol. 54, No. 3, May 2005 pg 837-845.

[17] **Fournier**, Laurent: Learning Capabilities for Improving Automatic Transmission Control. IEEE

[18] **Furukawa**, Hideo., Kenji Hagiwara, Masayuki Fujita and Kenko Uchida: Robust Control of an Automatic Transmission System for Passenger Vehicles. 0-7803-1 872-2/94©IEEE, 1994. pg 397-402.

[19] **Furukawa**, Hideo., Kenji Hagiwara, Masayuki Fujita and Kenko Uchida: Robust Control of an Automatic Transmission System for Passenger Vehicles. 0-7803-1 872-2/94©IEEE, 1994.

[20] **Gao**, Bingzhao., Hong Chen, Haiyan Zhao, and Kazushi Sanada: A Reduced-Order Nonlinear Clutch Pressure Observer for Automatic Transmission. 1063-6536©IEEE, 2009.

[21] **Gao**, Bingzhao., Hong Chen, Haiyan Zhao, Kazushi Sanada: A Reduced-Order Nonlinear Clutch Pressure Observer for Automatic Transmission Using ISS. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico, Dec. 9-11, 2008.

[22] **Gao**, Bingzhao., Hong Chen and Kazushi Sanada: Clutch Slip Control of Automatic Transmission Using Back Stepping Technique. ICROS-SICE International Joint Conference 2009. August 18-21, 2009, Fukuoka International Congress Center, Japan.

[23] **Gebert**, Juergen: Adaptive parametervariation bei getriebesteuungen zur optimierung des schaltkomforts. Fortschritt Berichte VDI, 2000. ISBN 3-18-342412-6.

[24] **Gobbi**, M., I. Haque, P.Y. Papalambros and G. Mastinu: Optimization and Integration of Ground Vehicle Systems. Vehicle System Dynamics, Vol. 43, No. 6-7, June-July 2005, 437-453.

[25] **Glitzennin**, K., J. K. Hairick: Adaptive Control of Automotive Transmissions. IEEE, TP10 3:00.

[26] **Green**, J. H., J. K. Hedrick: Nonlinear Speed Control for Automotive Engines. IEEE, FP10 3:00 pg 2891-2897.

[27] **Griffin**, M. J.: Discomfort from Feeling Vehicle Vibration. Vehicle System Dynamics. Vol. 45, Nos. 7-8, July-August 2007, 679-698.

[28] **Hagerott**, Arnd: Automatisierte optimierung des schaltkomforts von automatikgetrieben, TU-Braunschweig 2003.

[29] **Han**, Kiwon., Wansik Ryu, In-Gyu Jang, Jaewook Jeon, Hyunsoo Kim, Sung-Ho Hwang: Experimental Study on the Shift Control Characteristics of CVT Using Embedded System. SICE-ICASE International Joint Conference 2006Oct. 18-2 1, 2006 in Bexco, Busan, Korea.

[30] **Haj-Fraj**, Ali., and Friedrich Pfeiffer: Dynamic Modeling and Analysis of Automatic Transmissions. Proceedings of the 1999 EEW ASME International Conference on Advanced Intelligent Mechatronics, September 19-23, 1999 Atlanta, USA.

[31] **Haj-Fraj**, A. and F. Pfeiffer: Optimization of Gear Shift Operations in Automatic Transmissions. 0-7803-5976-3/00©IEEE. AMC 2000-Nagoya, pg 469-473.

[32] **Haj-Fraj**, Ali: Dynamik und Regelung von Automatikgetrieben, TU-Muenchen, 2000.

[33] **Hebbale**, Kumar: Control of the Geared Neutral Point in a Traction Drive CVT. 0-7803-7896-2/03©IEEE, 2003.

[34] **Hoeijmakers**, Martin J.: The Electrical Variable Transmission in a City Bus. 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen Germany, 2004 0-7803-8399-0/04©IEEE, 2004. pg 2773-2778.

[35] **Holway**, Michaels., Quinn, Santos: Using Modern design Tool to Integrate the Systems Engineering and Software Engineering Process. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, Kohala Coast-Island of Hawaii, Hawaii, USA August 22-27, 1999.

[36] **Jiading**, Gu., Zhao Zhiguo, Yu Zhuoping: Development of the Power-train Control System for Four-Wheel Driven Hybrid Electric Vehicle. 978-0-7695-3571-5/09©IEEE, 2009. Global Congress on Intelligent Systems

[37] **Jiangwei**, Yu., Gao Yahui, Liu Zhiyuan: Development of Automatic Transmission Dynamics Simulation System. Proceedings of the 25th Chinese Control Conference 7-11 August, 2006, Harbin, Heilongjiang.

[38] **Joshi**, Ajinkya S., Nirav P Shah and Chris Mi: Modeling and Simulation of a Dual Clutch Hybrid Vehicle Power-train. 978-1-4244-2601-0/09©IEEE, 2009.

[39] **Jun**, Yi., Wang Xuelin, Hu Yuj In, and Li Chenggang: Fuzzy Control and Simulation on Automatic Transmission of Tracked Vehicle in Complicated Driving Conditions. 1-4244-0759-1/06©IEEE, 2006.

[40] **Kalinin**, V., R. Lohr, A. Leigh, G. Bown: Application of Passive SAW Resonant Sensors to Contactless Measurement of the Output Engine Torque in Passenger Cars. 1-4244-0647-1/07©IEEE, 2007.

[41] **Karmel**, A. M.: Dynamic Modeling and Analysis of the Hydraulic System of Automotive Automatic Transmissions. IEEE, WA9 - 11:30.

[42] **Katsu**, Fuyuku., Toshio Matsumura: Use of HILS and an Approach to MBCSD for AT and CVT Development. Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, October 4-6, 2006. pg 2111 – 2114.

[43] **Kim**, Wonoh. and George Vachtsevanoss: Fuzzy Logic Ratio Control for a CVT Hydraulic Module. Proceedings of the 15th IEEE International Symposium on Intelligent Control (ISIC 2000) Rio, Patras, Greece 17-19 July 2000.

[44] **Kim**, K., J. Kim, K. S. Huh, K. Yi and D. Choa: Real-Time Multi-Vehicle Simulator for Longitudinal Controller Design. Vehicle System Dynamics Vol. 44, No. 5, May 2006, 369-386.

[45] **Kim**, Daekyun., Huei Peng, Shushan Bai, and Joel M. Maguire: Control of Integrated Power-train with Electronic Throttle and Automatic Transmission. IEEE Transactions on Control Systems Technology, Vol. 15, No. 3, May 2007.

[46] **Kim**, Jung-ho., and Dong-il Dan Cho: An Automatic Transmission Model for Vehicle Control. 0-7803-4269-0/97©IEEE, 1998.

[47] **Kim**, Jung-ho., Byeong Yong Jeong, Dong-il Dan Cho and Hoyoun Kim: “Autotool”, A PC-Based Object-Oriented Automotive Power-train Simulation Tool. 0-7803-4269-0/97©IEEE, 1998.

[48] **Kirchner**, Eckhard.: Leistungübertragung in Fahrzeuggetrieben. Springer Verlag 2007. ISBN 978-3-540-35288-4.

[49] **Küçükay**, Ferit and F. Renoth: Intelligente Steuerung von Automatikgetrieben durch den Einsatz der Elektronik. ATZ Automobiltechnische Zeitschrift 96 No.4 pg 228-235, 1994.

[50] **Küçükay**, Ferit: Profile of Institute of Automotive Engineering, TU-Braunschweig.

[51] **Li**, Chunfu., Huiyan Chen, Yanqin Li, Guangjun Zheng: Automatic Transmission Test Data Acquisition System Development Based on Virtual Instrument. 978-1-4244-3864-8/09©IEEE, 2009. The Ninth International Conference on Electronic Measurement & Instruments ICEMI 2009.

[52] **Liao**, Chenglin., Huiyan Chen, Huarong Ding: The Research of Improving Shift Quality Through the Integrated Power-train Control. 0-7803-5296-3/99©IEEE, 1999, pg 395-397.

[53] **Ling**, Tu Qiao., Wan Pei Lin: Research on Fuzzy Logical Control System of the Electronic Automatic Transmission of Automobile. 0-7803-5296-3/99©IEEE, pg 398-400.

[54] **Looman**, Johannes.: Zahnradgetriebe. Springer Verlag 2009. ISBN 978-3-540-89459-9.

[55] **Matsumura**, Toshio., Shuji Ichikawa, Fuyuku Katsu, Masayuki Sato: The Development of a Controller Confirmation System for Automatic Transmissions and its Applications. Proceedings of the 2004, IEEE International Conference on Control Applications. Taipei, Taiwan, September 2-4, 2004.

[56] **Min**, Kyoung-Jae., Cheol-Woo Kang, Seung-Gyoong Jung: Refinement of the Interior Booming Noise Caused by the Lock-up Clutch in Automatic Transmission Vehicle. 1-4244-0427-4/06©IEEE, 2006. 18-20 Oct. 2006 IFOST pg 89-93.

[57] **Mingzhu**, Zhang: Speed Change and Range Shift Control Schedule of the Multi-Range Hydro-Mechanical CVT for Farm Tractors. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, June 25 - 28, 2006, Luoyang, China pg 1970-1974, 1-4244-0466-5/06©IEEE, 2006.

[58] **Morselli**, Riccardo., Roberto Zanasi and Amedeo Visconti: Generation of Acceleration Profiles for Smooth Gear Shift Operations. IEEE

[59] **Naunheimer**, Harald., Bernd Bertsche and Gisbert Lechner: Fahrzeuggetriebe. Springer Verlag 2007. ISBN 978-3-540-30625-2.

[60] **Pennati**, M., M. Gobbi and G. Mastinu: A dummy for the Objective Ride Comfort Evaluation of Ground Vehicles. Vehicle System Dynamics. Vol. 47, No. 3, March 2009, 343–362.

[61] **Pesgens**, Michiel., Bas Vroemen, Bart Stouten, Frans Veldpaus and Maarten Steinbuch: Control of a Hydraulically Actuated Continuously Variable Transmission. Vehicle System Dynamics, Vol. 44, No. 5, May 2006, 387–406.

[62] **Qin**, Guihe., Anlin Ge and Ju-Jang Lee: Knowledge-Based Gear-Position Decision. IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 2, June 2004 pg 121-126.

[63] **Qin**, Guihe., Anlin Ge, and Huansong Li: On-Board Fault Diagnosis of Automated Manual Transmission Control System. IEEE Transactions on Control Systems Technology, Vol. 12, no. 4, July 2004 pg 564-568.

[64] **Sakaguchi**, S., I. Sakai, T. Haga: Application of Fuzzy Logic to Shift Scheduling Method for Automatic Transmission. 0-78034614-7/93©IEEE, 1993.

[65] **Setlur**, P., J. R. Wagner, D. M. Dawson, and B. Samuels: Nonlinear Control of a Continuously Variable Transmission (CVT). IEEE Transactions on Control Systems Technology, Vol. 11, no. 1, January 2003 pg 101-108.

[66] **Setlur**, P., J. R. Wagner, D. M. Dawson and B. Samuels: Nonlinear Control of a Continuously Variable Transmission (CVT) for Hybrid Vehicle Power-train. Proceedings of the American Control Conference, Arlington, VA June 25-27, 2001.

[67] **Shena**, Shuiwen., Junzhi Zhangb, Xiaojiang Chena, Qing-Chang Zhongc and Roger Thornton: ISG Hybrid Power-train: A Rule-based Driver Modeling Corporating Look-ahead Information. Vehicle System Dynamics 2009, 1-37.

[68] **Shengxue**, Hu., Fu Xisheng, Zhang Mei, Guo Le: Investigation of the Torque Capacity of Automatic Transmission Fluids with Various Oil Additives. J. Synthetic Lubrication 21-2, July 2004. (21) 119 ISSN 0265-6582 \$45.00 (2516/0704).

[69] **Shijing**, Wu., Li Qunli, Zhu Enyong, Zhang Dawei, Xie Jing: Dynamic Modeling and Simulation on Automatic Transmission of Tracked Vehicle Using Fuzzy Control. Proceedings of the 27th Chinese Control Conference, July 16-18, 2008, Kunming, Yunnan, China

[70] **Shivi**, Zhang. and Li Guanghui: Modeling and Simulative Analysis of Shifting Schedule for the Automatic Transmission Vehicle. 978-1-4244-2723-9/09©IEEE, 2009.

[71] **Smith**, Michael Henry., Eric j. Barth, Nader Sadegh and George j. Vachtsevanos: The Horsepower Reserve Formulation of Drive Ability for a Vehicle Fitted with a Continuously Variable Transmission. Vehicle System Dynamics 2004, Vol. 41, No. 3, pp. 157–180.

[72] **Somuah**, Clement B., Andrew F. Burke, Bimal K. Bose, Robert D. King and Michael A. Pocabelloa: Microcomputer-Controlled Power-train for a Hybrid Vehicle. 0278-0046/83/0500-0126©IEEE, 1983.

[73] **Szczepaniak**, C. and A. Kesy: Damping Performance of Power Transmission System with Hydraulic Torque Converter. Vehicle System Dynamics. 20 (1991), pp. 283-295 0042-31 14/91/2005-0283©Swets & Zeitlinger.

[74] **Takahashi**, Hiroshi., and Kouichi Kuroda: A Study on Automated Shifting and Shift Timing Using a Driver's Mental Model. 0-7803-3652-6/96©IEEE, 1996.

[75] **Tanaka**, Hirohisa. and Hideyuki Wada: Fuzzy Control of Clutch Engagement for Automated Manual Transmission. Vehicle System Dynamics, 24 (1995), pp. 365-376 0042-31 14/95/2404-365S6©Swets & Zeitlinger.

[76] **Ting**, Thomas L: Development of a Neural Network Based Virtual Sensor for Automatic Transmission Slip. Proceedings of the 2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada October 27-30, 2002.

[77] **Wang**, Yanying., Marvin Kraska, Waiter Ortmann: Dynamic Modeling of a Variable Force Solenoid and a Clutch for Hydraulic Control in Vehicle Transmission System. Proceedings of the American Control Conference Arlington, VA June 25-27, 2001.

[78] **Watechagit**, Sarawoot. and Krishnaswamy Srinivasan: Implementation of On-Line Clutch Pressure Estimation for Stepped Automatic Transmissions. 2005 American Control Conference, June 8-10, 2005. Portland, OR, USA.

[79] **Watechagit**, Sarawoot. and Krishnaswamy Srinivasan: On-Line Estimation of Operating Variables for Stepped Automatic Transmissions. 0-7803-7729-X/03©IEEE,

2003. pg 279-284.

[80] **Watts**, R.F., R.K. Nibert, and M. Tandon: Anti-Shudder Durability of Automatic Transmission Fluids: Mechanism of the Loss of Shudder Control. *Tribotest journal* 4-1, September 1997.

[81] **Weil**, H.-G., G. Probst, F. Graf: Fuzzy Expert System for Automatic Transmission Control. CH3000-7/92/0000-0716©IEEE, 1992.

[82] **Wentao**, Sun. and Chen Huiyan: Research on Control Strategy and Integrated Power-train System as Shifting Progress. *IEEE Vehicle Power and Propulsion Conference (VPPC)*, September 3-5, 2008, Harbin, China 978-1-4244-1849-7/08©IEEE, 2008.

[83] **Wu**, Di, Yong Zhang, Yin-ping Chang: Dynamic Analysis and Simulation of Drive Ability and Control of a Double Transition Shifting System. 978-1-4244-2601-0/09©IEEE, 2009.

[84] **Wu**, Shijing., Hongshan Lu: Fuzzy Neural Network Control in Automatic Transmission of Construction Vehicle. *Proceedings of the 6th World Congress on Intelligent Control and Automation*, June 21 - 23, 2006, Dalian, China.

[85] **Wu**, Shijing., Enyong Zhu, Qunli Li, Jing Xie, Xiao Peng: Study on Intelligent Shift Control Strategy of Automobile Based on Genetic-fuzzy Algorithm. *The 3rd International Conference on Innovative Computing Information and Control (ICICIC'08)* 978-0-7695-3161-8/08©IEEE, 2008.

[86] **Xu**, Nuo., Huiyan Chen, Yuhui Hu and Haiou Liu: The Integrated Control System in Automatic Transmission. *Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation*. August 5 - 8, 2007, Harbin, China.

[87] **Xu**, Lu Xi., Xiangyang Liu Yanfang: Simulation of Gear-shift Algorithm for Automatic Transmission Based on MATLAB. 978-0-7695-3570-8/09©IEEE, 2009. *IEEE 10.1109/WCSE.2009.198* World Congress on Software Engineering, pg 476-480.

[88] **Yang**, Di., Z. Guo and A. A. Frank: Control and Response of Continuously Variable Transmission (CVT) Vehicles. *IEEE, FA9 - 11:15*.

[89] **Yang**, Weibin. and Guangqiang Wu: Research and Development of Automatic Transmission Electronic Control System. *Proceedings of the 2007 IEEE International Conference on Integration Technology*, March 20 - 24, 2007, Shenzhen, China pg 442-445. 1-4244-1092-4/07©IEEE, 2007.

[90] **Yoon**, Albert. and Pramod Khargonekar: Design of Computer Experiments for Open-loop Control and Robustness Analysis of Clutch-to-Clutch Shifts in Automatic Transmissions. *Proceedings of the American Control Conference Albuquerque, New Mexico June 1997.* 0-7a03-3~32-41971©AACC, 1997.

[91] **Yu**, Weibo., and Nan Li: Adaptive Fuzzy Shift Strategy in Automatic Transmission of Construction Vehicles. *Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation*, June 25 - 28, 2006, Luoyang, China.

[92] **Zanasi**, R., R. Morselli, A. Visconti and M. Cavanna: Head-Neck Model for the Evaluation of Passenger's Comfort. *Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland*, October 2002.

[93] **ZF** Friedrichshafen AG: Innovations of Great Value, www.zf.com

[94] **ZF** Friedrichshafen AG: Automatic Driving Pleasure, www.zf.com

[95] **ZF** Friedrichshafen AG: The freedom to Exceed Limits, www.zf.com

[96] **Zhang**, Ni. and Tie-Jun Wu: Guaranteed Performance Control for Uncertain Impulsive Hybrid Systems and its Application. *Proceedings of the American Control Conference Anchorage, AK May E10.2002*.

[97] **Zhang**, Yingjun. and Zhili Zhou: Hybrid Modeling and Simulation of Shifting Process Involving Multi-group Clutches. 1-4244-0759-1/06©IEEE, 2006.

[98] **Zhang**, Zhi Yi: Study on Fuzzy Automatic Transmission Strategy of vehicles. 978-1-4244-1674-5/08 ©IEEE, 2008. *CIS 2008* pg 1359-1363.

[99] **Zhang**, Zhi Yi: Study on Three Parameters Fuzzy Automatic Transmission Schedule for Vehicle by PLC and HMI. *Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation*, August 9 - 12, Changchun, China 978-1-4244-2693-5/09©IEEE, 2009, pg 4050-4054.

[100] **Zhong**, Zaimin., Changle Xiang, Muqiao Zheng: Drive Train Modeling and Model Analysis for Real-Time Application 0-7803-5296-3/99©IEEE.

