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ABSTRACT 
 

This research deals a non-stationary anisotropic rotor with different shaft orientation through its bending 

critical speeds. In case of an anisotropic rotor has the difference in the shaft orientation, in which the 

direction of the principal axis of the shaft cross-section in the left shaft end is different from the direction 

in the right shaft end. The effect of the gyroscopic moments must be taken into account, whether a rigid 

disk is attached symmetry or asymmetry on the shaft. According to the previous researches, it is well 

known that the amplitude of the unbalance response of a rotor which runs through a critical speed can be 

reduced by increasing the value of the acceleration. The anisotropic rotor model with different shaft 

orientation is run up until through the critical speeds. The dynamic responses of the rotor models are 

compared and depicted for various anisotropic coefficients and differences in the shaft orientations. The 

higher the anisotropy coefficient of the rotor, the higher is the maximum amplitude. For the rotor with the 

same element anisotropy, but the difference in the shaft orientation β∆ is varied, the bigger the difference 

in the shaft orientation, the lower is the reached maximum amplitude. 
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1. Introduction  
It is well known that the amplitude of the unbalance 

response of a rotor which runs through a critical speed 

can be reduced by increasing the value of the 

acceleration. Iwatsubo et al [1] studied the non-

stationary vibration of an asymmetric rotor passing 

through its critical speed. In their models, two 

approaches have been used. In the first approach, the 

system is driven at constant acceleration, for which an 

energy source provides an ideal driving force to the 

vibrating system. The second one is an energy source 

interacting with the vibrating system, where the system 

is driven by a non-ideal energy source. Markert et al [2] 

investigated a minimal torque that is needed to 

accelerate an elastic rotor to pass the first bending 

critical speed. Meanwhile, Markert found that as 

reported in [3] and [4], the maximum rotor deflection is 

smaller than during stationary resonance speed. The 

maximum rotor deflection does not appear when the 

rotor speed corresponds to the critical speed. The peak is 

shifted to a higher frequency during run-up and shifted 

to a lower frequency during run-down. After running 

through resonance the vibrational components at natural 

frequency dominate but will decay with time. Ganesan 

[5] analyzed the effect of bearings and shaft asymmetry 

on the stability of the rotor. Particular attention has been 

paid to the motion characteristics of the rotor while 

passing through the primary resonance. The presence of 

proper combination between bearings and shaft 

asymmetries on the rotor helps the stability of the 

unbalance response during start-up or run-down 

operation.  

In order to describe the complete nature of the 

problem, additional characteristics must be also 

considered. In this problem, the Jeffcott rotor is no 

longer a satisfactory model. Therefore, several solutions 

are proposed by using an approach of a discrete or 

continuous rotor. Gasch et al [6] and Markert [7] 

investigated a flexible rotor with a continuous mass 

distribution passing through its critical speeds under a 

driving torque. Similar to the authors above, Genta and 

Delprete [8] approached a rotor system with multiple 

degrees of freedom by using the finite element method. 

However, none of the researchers above studied about 
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anisotropic rotor with different shaft orientation. A 

published paper which investigated anisotropic rotor 

with different shaft orientation is introduced by Malta 

[9]. In that paper, the rotor is approached by using the 

minimal number of discrete model. The effects of the 

gyroscopic moments which come from the difference in 

the shaft orientation and the asymmetry position of the 

disk on the shaft were studied. In the analyses, the rotor 

stability is considered only at constant angular velocity. 

In the present work, the similar model with the model in 

the previous paper [9] will be conducted at constant 

angular acceleration (i.e. run up operation). 

 

  2. System Modelling 
In Figure 1, the rotor shaft is modelled by two 

discrete elements which have different orientations of 

the principal axes of the element cross-sections. The 

rotor is simply supported by two rigid bearings. In order 

to simplify the shaft anisotropy, a rectangular cross 

section of the shaft is used. The anisotropies of all shaft 

elements are the same. By using the minimal number of 

elements, the rotor is discretized into two elements with 

the length 1l and 2l , respectively. Therefore, the 

mathematical model can be simplified and possesses 

only four degrees of freedom, where the vibration of the 

shaft comes from only the motions ( ηζ ϕϕηζ ,,, WW ) of 

the disk. The disk is assumed to be a thin disk. In the 

whole system, the internal and external dampings are 

taken into account. As a point of interest, although the 

disk is attached symmetrically on the shaft ( 1l = 2l ) and 

all elements have the same cross-sectional moment of 

inertia, but because of different orientation between the 

shaft elements, the disk position makes a precession. In 

this case, the effect of gyroscopic moments is no longer 

negligible. 

 
Figure 1 Anisotropic rotor with difference shaft 

orientation supported by rigid bearings 

 

Based on the Fig. 2, if the rotor is assumed that has 

the minimal number of discrete elements (i.e. shaft with 

two elements only) the subscribe k has a value 1 or 2. 

Furthermore, the coordinate systems of the principal 

axes of the first and the second shaft element are placed 

on the *

1η - *

1ζ - plane inclined at an angle 1β  and the *

2η

- *

2ζ - plane at angle 2β . The centre of gravity S of the 

disk is eccentric to the centre of the shaft W and its 

position being defined by the eccentricity ε  and the 

angular positionφ .  

 
 

Figure 2 Coordinate system of anisotropic rotor 

 

In rotating reference frame, the moments of inertia 

of cross-section in principal axes of shaft elements are 

obtained by using the following equations 

 

( ) ( ) kkkkkkk IIIIdAI βη ζηζηζ 2cos**2
1

**2
12 −−+== ∫  

                         kkI βζη 2sin**−   (1a) 

( ) ( ) kkkkkkk IIIIdAI βζ ζηζηη 2cos**2
1

**2
12 −++== ∫  

                         kkI βζη 2sin**+   (1b) 

( ) kkkkkk IIdAI βζη ζηηζ 2sin**2
1 −−=−= ∫  

                         kkI βζη 2cos**+   (1c) 

 

Furthermore, as shown in Fig. 3, the disk on the 

shaft is described in the coordinate system (x', y', z'), 

where the plane of disk is parallel to the y'-z'-plane. The 

x'-axis is perpendicular to that plane. Furthermore, y'-

axis can move only in the x-y-plane and z'-axis in the x-

z-plane, therefore y'-axis and z'-axis can be not-

perpendicular, where their position can make 

precessions zϕ and yϕ , respectively. This means the 

coordinate system (x', y', z') is no longer orthonormal. 

From the Fig. 3, the transformation equations of 

basis vectors are obtained 

 

.

tantan1

tantan

'

'

cossin

cossin

22
'

'

'

'

'

zy

zyyzx

zy

zy

x

zzxzy

zyxyz

eee

ee

ee
e

eee

eee

ϕϕ

ϕϕ

ϕϕ

ϕϕ

++

−+
=

×

×
=

+−=

+=

rrr

rr

rr
r

rrr

rrr

 (2) 



 

 

Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9 

Palembang, 13-15 Oktober 2010 

 

 

ISBN : 978-602-97742-0-7                       MIII-17                                    

Further, the kinematics relationships of angular 

velocities in (x', y', z')-coordinate system are determined. 

If angular speed of the disk is denoted by Sω  in the (x', 

y', z')-coordinate system, the y'-z'-plane that rotates 

along the x'-axis is denoted by Eω  and ϕ&  is the 

rotational speed of the shaft, then 

 

.'xES e
r

&ϕωω −=  (3) 

 

 
 

(a) 

 

 
(b) 

 
Figure 3 Coordinate of disk in anisotropic rotor system 

 

Furthermore, angular speed of basis vectors 'ye
r

 and 

'ze
r

 are 

 

( ) ( ) ( ) ( ) '''''''''' zyzyyyxyxy eeeeeee
rr

&
rr

&
rr

&
r

ϕϕϕω ++=  (4) 

 

and 

 

( ) ( ) ( ) ( ) '''''''''' zzzyzyxzxz eeeeeee
rr

&
rr

&
rr

&
r

ϕϕϕω ++= , (5) 

 

respectively. Note that, the expression in parenthesis is 

not a function argument but an alternative index. For an 

example, the ( ) ''' xyx ee
rr

&ϕ  means the rotational speed of 

the vector 'xe
r

 due to y'-axis. Because the plane of disk is 

placed at the y'-z'-plane and the precession zϕ  is the 

angle of the plane of disk with respect to the z-axis, 

hence 

 

( ) zzy ee
r

&
r

ϕω =' .  (6) 

 

Similar to the Eq. (6), the precession yϕ  is the 

angle of the plane of disk with respect to the y-axis, 

hence 

 

( ) yyz ee
r

&
r

ϕω =' . (7) 

 

By using the Cramer’s rule, angular speed ( )'' yx e
r

&ϕ , 

( )'' yy e
r

&ϕ , ( )'' yz e
r

&ϕ , ( )'' zx e
r

&ϕ , ( )'' zy e
r

&ϕ  and ( )'' zz e
r

&ϕ  of the 

basis vectors can be determined. Based on the Figure 3, 

it is clear that the angular speed of the y'-z'-plane is the 

rotational speed of the vector 'ye
r

 due to z'-axis and the 

rotational speed of the vector 'ze
r

 due to y'-axis, hence 

the angular speed in Eq. (3) can be reformulated as 

 

( ) ( ) '''''' zyzyzyE eeee
rr

&
rr

& ϕϕω +=  . (8) 

 

By inserting the basis vectors of the results of the 

Cramer’s rule and the Eq. (8) into the Eq. (3), the Sω  

can be reformulated. Furthermore, the vector of angular 

momentum can be calculated 

 

SL ωΘ=  . (9) 

 

If the precessions zϕ and yϕ  are assumed to be 

small then 

 

( ) ( ) yyazpxp eeL
r

&&
r

& ϕϕϕϕ Θ+Θ−+Θ−=   

      ( ) zzayp e
r

&& ϕϕϕ Θ+Θ+  . (10) 

 

The time derivative of angular momentum in 

rotating reference frame can be rewritten as 

 

( ) ( )[ ηζη ϕϕϕϕϕϕϕ &&&&&
r

&& ++Θ+Θ−= 2

pxp e
dt

dL
 

         ( )] ζηηζζ ϕϕϕϕϕϕϕ ea

r
&&&&&&& −−−Θ+ 22

 

         ( )[ ζηζ ϕϕϕϕϕϕ &&&&& −+−Θ+ 2

p  

         ( )] ηζζηη ϕϕϕϕϕϕϕ ea

r
&&&&&&& ++−Θ+ 22

 (11) 

 

For the case in Figure 1, the rotor model has a node 

which has four degrees of freedom, those are two 
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