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ABSTRACT

This research deals a non-stationary anisotropic rotor with different shaft orientation through its bending
critical speeds. In case of an anisotropic rotor has the difference in the shaft orientation, in which the
direction of the principal axis of the shaft cross-section in the left shaft end is different from the direction
in the right shaft end. The effect of the gyroscopic moments must be taken into account, whether a rigid
disk is attached symmetry or asymmetry on the shaft. According to the previous researches, it is well
known that the amplitude of the unbalance response of a rotor which runs through a critical speed can be
reduced by increasing the value of the acceleration. The anisotropic rotor model with different shaft
orientation is run up until through the critical speeds. The dynamic responses of the rotor models are
compared and depicted for various anisotropic coefficients and differences in the shaft orientations. The
higher the anisotropy coefficient of the rotor, the higher is the maximum amplitude. For the rotor with the
same element anisotropy, but the difference in the shaft orientation AR is varied, the bigger the difference

in the shaft orientation, the lower is the reached maximum amplitude.
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1. Introduction

It is well known that the amplitude of the unbalance
response of a rotor which runs through a critical speed
can be reduced by increasing the value of the
acceleration. Iwatsubo et al [1] studied the non-
stationary vibration of an asymmetric rotor passing
through its critical speed. In their models, two
approaches have been used. In the first approach, the

through resonance the vibrational components at natural
frequency dominate but will decay with time. Ganesan
[5] analyzed the effect of bearings and shaft asymmetry
on the stability of the rotor. Particular attention has been
paid to the motion characteristics of the rotor while
passing through the primary resonance. The presence of
proper combination between bearings and shaft
asymmetries on the rotor helps the stability of the

system is driven at constant acceleration, for which an unbala'nce response during start-up or run-down
energy source provides an ideal driving force to the operation.

vibrating system. The second one is an energy source In order to describe the complete nature of the
interacting with the vibrating system, where the system problem, additional ~characteristics must be also

is driven by a non-ideal energy source. Markert et al [2]
investigated a minimal torque that is needed to
accelerate an elastic rotor to pass the first bending
critical speed. Meanwhile, Markert found that as
reported in [3] and [4], the maximum rotor deflection is
smaller than during stationary resonance speed. The
maximum rotor deflection does not appear when the
rotor speed corresponds to the critical speed. The peak is
shifted to a higher frequency during run-up and shifted
to a lower frequency during run-down. After running

considered. In this problem, the Jeffcott rotor is no
longer a satisfactory model. Therefore, several solutions
are proposed by using an approach of a discrete or
continuous rotor. Gasch et al [6] and Markert [7]
investigated a flexible rotor with a continuous mass
distribution passing through its critical speeds under a
driving torque. Similar to the authors above, Genta and
Delprete [8] approached a rotor system with multiple
degrees of freedom by using the finite element method.
However, none of the researchers above studied about
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anisotropic rotor with different shaft orientation. A
published paper which investigated anisotropic rotor
with different shaft orientation is introduced by Malta
[9]. In that paper, the rotor is approached by using the
minimal number of discrete model. The effects of the
gyroscopic moments which come from the difference in
the shaft orientation and the asymmetry position of the
disk on the shaft were studied. In the analyses, the rotor
stability is considered only at constant angular velocity.
In the present work, the similar model with the model in
the previous paper [9] will be conducted at constant
angular acceleration (i.e. run up operation).

2. System Modelling

In Figure 1, the rotor shaft is modelled by two
discrete elements which have different orientations of
the principal axes of the element cross-sections. The
rotor is simply supported by two rigid bearings. In order
to simplify the shaft anisotropy, a rectangular cross
section of the shaft is used. The anisotropies of all shaft
elements are the same. By using the minimal number of
elements, the rotor is discretized into two elements with
the length ¢, and ¢, , respectively. Therefore, the
mathematical model can be simplified and possesses
only four degrees of freedom, where the vibration of the
shaft comes from only the motions (< , 7 » @9, of

the disk. The disk is assumed to be a thin disk. In the
whole system, the internal and external dampings are
taken into account. As a point of interest, although the
disk is attached symmetrically on the shaft (¢, =/, ) and

all elements have the same cross-sectional moment of
inertia, but because of different orientation between the
shaft elements, the disk position makes a precession. In
this case, the effect of gyroscopic moments is no longer
negligible.

Figure 1 Anisotropic rotor with difference shaft
orientation supported by rigid bearings

Based on the Fig. 2, if the rotor is assumed that has
the minimal number of discrete elements (i.e. shaft with
two elements only) the subscribe k has a value 1 or 2.
Furthermore, the coordinate systems of the principal
axes of the first and the second shaft element are placed

on the7, - ¢, - plane inclined at an angle /3, and the 7,

-{, - plane at angle 3, . The centre of gravity S of the

disk is eccentric to the centre of the shaft W and its
position being defined by the eccentricity € and the
angular position ¢ .

r}-l{r e - .---.....

Figure 2 Coordinate system of anisotropic rotor
In rotating reference frame, the moments of inertia

of cross-section in principal axes of shaft elements are
obtained by using the following equations

Iie = [17 dA =1 + Lo )~ = L Jeos 28,

—l g SIN 25, (la)
Ly =[¢iaA = L (T + Tege )4 2L = I )c0s 23,

+ e+ SIN 25 (1b)
Lipe = —Jnk{k dA = —%(lk”* — Ly )sin 25,

+ e+ OS2y (lc)

Furthermore, as shown in Fig. 3, the disk on the
shaft is described in the coordinate system (x', y’, z'),
where the plane of disk is parallel to the y'-z'-plane. The
x'-axis is perpendicular to that plane. Furthermore, y'-
axis can move only in the x-y-plane and z'-axis in the x-
z-plane, therefore y'-axis and z'-axis can be not-
perpendicular, where their position can make

precessions @_and @ , respectively. This means the

coordinate system (x, y', z) is no longer orthonormal.
From the Fig. 3, the transformation equations of
basis vectors are obtained

e, =sin@, e, +cos@, e,

e, =-—sing_e +cosg, e, 2)
. - -

ey Xe, ey +tang e —tang, e,

e, =

|Eyv><éz' \/1+tan2¢)y+tan2 0.
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Further, the kinematics relationships of angular
velocities in (x', y', z')-coordinate system are determined.
If angular speed of the disk is denoted by @s in the (x/,

v, z')-coordinate system, the y'-z-plane that rotates
along the x"-axis is denoted by w, and ¢ is the

rotational speed of the shaft, then

Oy =0, — Qe . 3)

(a)

(b)
Figure 3 Coordinate of disk in anisotropic rotor system

Furthermore, angular speed of basis vectors €. and

e, are
w(Ev )= ¢x (Ey )Ex + ¢v (Ey )Ey + ¢z (Ev )Ez (4)

and

006.)= 0,60, + 0,60, + 9.6 ©

respectively. Note that, the expression in parenthesis is
not a function argument but an alternative index. For an

example, the @ (Ey, )é'x, means the rotational speed of
the vector € . due to y'-axis. Because the plane of disk is

placed at the y'-z'-plane and the precession @, is the

angle of the plane of disk with respect to the z-axis,
hence

wle,)=9¢.¢.. (6)

Similar to the Eq. (6), the precession @ is the

angle of the plane of disk with respect to the y-axis,
hence

wlE,)=¢,¢,. ™
By using the Cramer’s rule, angular speed ¢,. (Ey‘),

¢yv(é'y,), ¢z'(5)")’ ¢.(.), gby,(é'z,) and ¢_(¢..) of the
basis vectors can be determined. Based on the Figure 3,
it is clear that the angular speed of the y'-z"-plane is the
rotational speed of the vector é'y, due to z™-axis and the

rotational speed of the vector EZ, due to y'-axis, hence
the angular speed in Eq. (3) can be reformulated as

@y = ¢v(gz)gv + ¢Z(Ey)gz : (8)

By inserting the basis vectors of the results of the
Cramer’s rule and the Eq. (8) into the Eq. (3), the oy

can be reformulated. Furthermore, the vector of angular
momentum can be calculated

L=0a, . ©)

If the precessions @, and ¢, are assumed to be

small then

L=(-0,p)¢, +(-0,00.+0,0,)¢,
+(©,00, +0,9.)é. . (10)

The time derivative of angular momentum in
rotating reference frame can be rewritten as

%:(_(ap(p) é, +[®p(¢(p,7 +9’p, +¢¢ﬂ)
+0,(6, -9’0, 200, -0, &,
+[®p(_ o, +¢2¢77 _¢¢;)
+0,(p, - 90, + 200, + 0. lé, (D)

For the case in Figure 1, the rotor model has a node
which has four degrees of freedom, those are two
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