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ABSTRACT

This research deals with a new discrete model of anisotropic rotor. In case of an anisotropic rotor
has the difference in the shaft orientation, in which the direction of the principal axis of the shaft
cross-section in the left shaft end is different from the direction in the right shaft end. In order to
simplify the developed model, the rotor is supported by rigid bearings. The effect of the
gyroscopic moments must be taken into account, whether a rigid disk is attached symmetry or
asymmetry on the shaft. The sources of the gyroscopic moments in the system are distinguished
into two types. In the first type, the occurrence of the gyroscopic moments in the system is caused
by the difference in the shaft orientation. In the second type, it is caused by the asymmetric
position of a rigid disk on the shaft. The effects of the gyroscopic moments which come from the
difference in the shaft orientation and the asymmetry position of the disk on the shaft have the
different characteristics due to the stability of the anisotropic rotor. The stability chart of the
rotor is considered through analysis of eigenvalues of the system. For purely anisotropic rotor,
the stability chart of the model shows that the location of the unstable area lies exactly in the
range between the first and the second natural frequencies. By increasing the element anisotropy,
the range of the instability becomes wider. For anisotropic rotor with the difference in the shaft
orientation, the occurrence of the gyroscopic moments in the system is not significant or very
small, but it contributes to the reduction of the interval of rotor instability.
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1. Introduction

In case of a purely anisotropic rotor, the shaft stiffness of the rotor is different in the vertical
and horizontal directions. In this case, the phenomenon of the weight critical occurs during the rotating
anisotropic rotor and it has been examined by many researchers [1]. The fundamental theoretical
investigations of an anisotropic rotor and its corresponding differential equations of motion have been
studied by Kellenberger [2] and Ariaratnam [3]. In order to describe its basic characteristic, Michatz [4]
investigated a simple Jeffcott rotor model, in which the effects of external and internal damping on the
rotor have been taken into account. In this model, the instability of the rotor can be described
accurately. Yamamoto et al [5] investigated an asymmetrical rotor with inequality in stiffness (i.e.
different cross-sections along the shaft) including the effects of gyroscopic moments. However, the
directions of the principal axes of the cross-sections are uniform. In case of an anisotropic rotor with a
constant cross-section along the shaft (i.e. a purely anisotropic rotor), the system can be still
approached by a Jeffcott rotor model, although its cross-section is placed not in the principal axis of the
cross-section as presented in [6].

If a real rotor with different cross-sections along the shaft is modelled by discrete elements, it is
possible that the elements will have different orientations of principal axes. In this paper, an anisotropic
rotor with the difference in the shaft orientation is investigated. The direction of the principal axis of
the shaft cross-section in the left shaft end is different from the direction in the right shaft end. In this
condition, the Jeffcott rotor is no longer a satisfactory model. Therefore, a new discrete model must be
developed. In order to simplify the developed model, the rotor is supported by rigid bearings.
Nevertheless, the effect of the gyroscopic moments must be taken into account, whether a rigid disk is
attached symmetry or asymmetry on the shaft. The sources of the gyroscopic moments in the system
are distinguished into two types. In the first type, the occurrence of the gyroscopic moments in the
system is caused by the difference in the shaft orientation. In the second type, it is caused by the
asymmetric position of a rigid disk on the shaft. The effects of the gyroscopic moments which come
from the difference in the shaft orientation and the asymmetry position of the disk on the shaft will be
studied.

2. System Modelling

In Figure 1, the rotor shaft is modelled by two discrete elements which have different orientations
of the principal axes of the element cross-sections. The rotor is simply supported by two rigid bearings.
In order to simplify the shaft anisotropy, a rectangular cross section of the shaft is used. The
anisotropies of all shaft elements are the same. By using the minimal number of elements, the rotor is
discretized into two elements with the length ¢,and, , respectively. Therefore, the mathematical model
can be simplified and possesses only four degrees of freedom, where the vibration of the shaft comes
from only the motions (&, .7y .¢,.¢,) of the disk. The disk is assumed to be a thin disk with a ratio
between polar mass and axial mass moment of inertia of 1.98 (i.e. disk radius = 0.06 m, disk thickness
=0.01 m). In the whole system, the internal and external dampings are neglected. As a point of interest,
although the disk is attached symmetrically on the shaft (¢,=¢,) and all elements have the same cross-
sectional moment of inertia, but because of different orientation between the shaft elements, the disk
position makes a precession. In this case, the effect of gyroscopic moments is no longer negligible.
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Figure 1 Anisotropic rotor with difference shaft orientation supported by rigid bearings

Based on the Fig. 2, if the rotor is assumed that has the minimal number of discrete elements (i.e.
shaft with two elements only) the subscribe k has a value 1 or 2.

-1

Figure 2 Coordinate system of anisotropic rotor

Furthermore, the coordinate systems of the principal axes of the first and the second shaft element
are placed on the, - £, - plane inclined at an angle g, and the 7, - £, - plane at angle g, . The centre of

gravity S of the disk is eccentric to the centre of the shaft W and its position being defined by the
eccentricity ¢ and the angular positiong. The kinematics relationships between the centre of gravity
and the centre of shaft are

2, =2, +5Cc0s @+ ¢ _

ys:yw+55in(7+¢: (1)

The kinematics relationships between coordinates of principal axes and rotating reference frame of the
k"-shaft element can be determined by using the following transformation equations
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gk =§: COS:Bk _77; sin ﬂk (2)
1, =&, sin B +1, cos B,

and between rotating and fixed reference frames can be determined by using transformation equations
as follows

z={cosp—nsing @3)
y=¢{sing+ncose .

If a force acts on the rotor in arbitrary direction then this force is projected as F, in ¢ -direction and
as F, in p-direction. Furthermore, because of different shaft orientations, the force F, is projected
again on the first element toF . and F . and on the second element to F . andF .. In the same way, the
force F, is projected on the first element to F. and F. and is projected on the second element to F.
and F.. Furthermore, if the resultant of forces in ¢£; -direction or ¢, -direction has a positive value, then
bending moment M, or M, will have a positive value. On the contrary, if resultant of forces in #; -

direction or n,-direction has a positive value, then bending moment M. or M, will have negative
value. In a moment diagram, the bending moments can be depicted as shown in Fig. 3.

Mg ()
Figure 3 Bending moments in anisotropic rotor with different shaft orientation
In order to simplify the mathematical model, the moments of inertia of cross-section in principal

axes of shaft elements should be transformed to rotating reference frame by using the following
equations

2 ™~ N
le = [n8 dA=3 o + 1o 573G = 1o SOS28,

Ly SIN 23, (4a)
~ ~
I, :jé/kz dA:%(kn* + Ik{*j% (klz* = - G082/,
e SIN 2B, (4b)

~.
qug =—f77k§k dA:—% (k,7* - |k§*jln 20,
+ ke COS Zﬂk (40)
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3. Gyroscopic Moments

The differential equations of anisotropic rotor supported by rigid bearings have been formulated in
the previous research [7]. As shown in Figure 4, the disk on the shaft is described in the coordinate
system (X', y', '), where the plane of disk is parallel to the y'-z'-plane. The x'-axis is perpendicular to
that plane. Furthermore, y'-axis can move only in the x-y-plane and z'-axis in the x-z-plane, therefore y'-
axis and z'-axis can be not-perpendicular, where their position can make precessions ¢,andg,,

respectively. This means the coordinate system (X', y', z') is no longer orthonormal.

(a)

(b)
Figure 4 Coordinate of disk in anisotropic rotor system

From the Figure 4, the transformation equations of basis vectors are obtained

€, =singp, € +cosp, €,
€, =-sing, & +cosgp, €, (5)

€,' € ttangp,€ —tang, €,

(ol

X'

= ey' ><
€, &,

\/1+tan2 9, +tan® g,
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Further, the kinematics relationships of angular velocities in (x', y', z')-coordinate system are
determined. If angular speed of the disk is denoted by o, in the (X', y', z')-coordinate system, the y'-z'-

plane that rotates along the x'-axis is denoted by ». and ¢ is the rotational speed of the shaft, then
s =0g — P&, . (6)

Furthermore, angular speed of basis vectors &, and &, are
o€, >¢.€ 8. +9,€ 8,+0. €8 (1)
and
o€ =9 € 5 +0,€ 3, +0. €35, (8)
respectively. Note that, the expression in parenthesis is not a function argument but an alternative
index. For an example, the ¢, €, §, means the rotational speed of the vector &, due to y'-axis. Because

the plane of disk is placed at the y'-z'-plane and the precession ¢, is the angle of the plane of disk with
respect to the z-axis, hence

w(y' ;:% é‘z ' (9)

Similar to the Eq. (9), the precession ¢, is the angle of the plane of disk with respect to the y-axis,
hence

a)ez' :: ¢y é‘y ' (10)
By using the Cramer’s rule, angular speed ¢, €, , ¢, €, , ¢, €, , ¢, €., ¢,€. and ¢, €, _of the

basis vectors can be determined. Based on the Figure 3, it is clear that the angular speed of the y'-z'-
plane is the rotational speed of the vector &, due to z'-axis and the rotational speed of the vector &, due

to y'-axis, hence the angular speed in Eq. (6) can be reformulated as
a)E = ¢7y' ez' Ey' + (bz' (y' §z' : (11)

By inserting the basis vectors of the results of the Cramer’s rule and the Eq. (11) into the Eq. (6), the
oy can be reformulated. Furthermore, the vector of angular momentum can be calculated

L=0uwy . (12)
If the precessions ¢, and ¢, are assumed to be small then

L=€0,0 %, + €00, +0,p, 3,
+ GpWy +®a¢z /\éz ) (13)

The time derivative of angular momentum in rotating reference frame can be rewritten as
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~

~€0,5 5.+ b, €, + %0 + 9,
+0, 6, -9’0, — 200, - be, D

+ b, Coo, + 670, -0,

+®a (’q - (p (pq + 2(/)(p§ + (p(pg }I} (14)

dt

4. Differential Equations of Motion

The anisotropic rotor is modelled in rotating reference frame. Therefore, the rotor system becomes
speed-dependent. The stability chart of the rotor is considered through analysis of eigenvalues of the
system. In the developed model, the shaft stiffness matrix is assembled in the rotating reference frame
by considering asymmetric bending by means of the strain energy method. In this paper, the
formulation of the strain energy in asymmetric bending is not presented. For further information, this
formulation can be found in [8] and [9].

The shaft is assumed to be massless, because the shaft mass is very light compared to the rotor
mass. By using the minimal number of discrete elements, the size of the shaft stiffness matrix can be
minimalized. For an anisotropic rotor with single disk, the shaft is discretized by two elements only.
The flexibility influence coefficients (h; ) of the shaft are obtained as follows

=S T T e €, € (159)

kng _4
for |—L4 and j=14

kn k[

h = ZL kl] 2 rv'|k§ (/ % (jdx (15b)
E (kl] k& Ikr]{/
fori=23and j=23
1 ~
h - Zj; Ikl] (T\/I k< (jx (15C)
“E (krzlk4 k'l§ S

fori=1,4 and j=2,3

where E is the Young’s modulus of the shaft material, ¢, is the length of shaft element and M is

normalized moment bending. The flexibility matrix can be obtained by assembling these flexibility
influence coefficients. The stiffness matrix is determined by inversion of the flexibility matrix.
Furthermore, the differential equations of translatory inertia (i.e. in the ¢ and 7 -directions) in the

rotating coordinate system can be determined by using 2" Newton’s Law, hence

m€, —ins — 2015 — 9> s 8, )
+mcs +¢4s +2¢é;s —(ban},]:ZFn.

Note that, the Eq. (16) is still defined in the centre of gravity of the disk. The differential equations of
rotary inertia (i.e. in the ¢, and ¢, -directions) can be obtained by using the formulations in the Eq.

(14) and the stiffness matrix especially in the ¢, and ¢, -directions.
In general, the differential equations of motion of the rotor can be witten as
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WEIPHIEHS R (17)

where p and [ are speed-dependent proportional matrices due to velocity and displacement,
respectively.

5. Stability Investigation
The stability of the rotor system is considered based on the homogenous linear equations of motion
of the rotor in the Eq. (17), hence

WEIPHRIEHS 4. (18)

This equation can be rearranged in state-space in order to reduce the differential equations to first-
order.

By Hd e

For simplification in writing, the Eq. (19) can be written as
PHEIBHS 4. (20)

By solving the Eq. (20), the eigenvalues and eigenvectors can be considered. The eigenvector in
this solution is usually called as right eigenvectors. In stability analysis, the solution of eigenvalues
according to Eq. (20) is already sufficient. Usually, the eigenvalues are complex frequencies consisting
of a real part (i.e. defined as decay rate, where it decreases amplitude in time) and an imaginary part
(i.e. natural frequencies). An instability condition is involved if at least one of the real parts of the
eigenvalues is positive value.

6. Case study and Discussion

As depicted in Fig. 1, the rotor shaft is modelled by two discrete elements which have different
orientations of the principal axes of the element cross sections. The rotor is simply supported by two
rigid bearings. In order to simplify the shaft anisotropy, a rectangular cross section of the shaft is used.
The anisotropies of all shaft elements are the same and are defined as

iy (21)

S
n

¢

In the numerical simulation, the coefficient ., of the element anisotropy is varied from 0 to 0.99.
The width of the rectangular cross section is defined to be constant (e.g. b=8 mm) and the thickness h
of the cross section is formulated as
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h=b [t (22)
1+ sy
A rigid disk is also attached on the shaft at the distance ¢, from the left shaft end or ¢, from the

right shaft end. The disk is assumed to be a thin disk with a ratio between polar mass and axial mass
moment of inertia of 1.98 (i.e. disk radius = 0.06 m, disk thickness = 0.01 m). In the whole system, the
internal and external dampings are neglected.

Furthermore, four cases of anisotropic rotors are discussed in this section. First, the simulation of a
purely anisotropic rotor (AB=0) supported by rigid bearings is performed. A disk is attached in the

centre of the shaft. Similar to the investigation above, the model is analyzed to obtain the
characteristics of stability through eigenvalue analyses of anisotropic rotor without gyroscopic
moments acting on the system. In the other models, the effects of gyroscopic moments are taken into
account. These effects are also distinguished into two types. In the first type, the disk is not attached in
the centre of the shaft and the gyroscopic moments come only from the asymmetry of the rotor. This is
simulated in Model 2. In the second type, the gyroscopic moments come only from the difference in the
shaft orientation as simulated in Model 3. Finally, both sources of the gyroscopic moments from the
asymmetry of the rotor and the difference in the shaft orientation are taken into account in Model 4.
The parameters of the four rotor cases are listed in Table 1.

In case of the purely anisotropic rotor, the instability area as depicted in Fig. 5 lies exactly in the
range between the first and the second natural frequency of the anisotropic rotor. The coefficient of the
element anisotropy is varied between x4, =0 and 0.99. At each coefficient of the element anisotropy,
the first and the second natural frequencies are considered as the forward whirl speeds at rotational
speed @ =0. These natural frequencies have been normalized by the first natural frequency. Because of
purely anisotropic along the rotor shaft, the first and second natural frequencies of the rotor correspond
to the mode of U-form of the shaft bending in each direction of shaft cross-section. At the third and the
fourth natural frequencies the rotor modes have S-form of the shaft bending and no instability exists.
The instability area depicted in Fig. 5 is equivalent to the case of a purely anisotropic rotor investigated
in [1] or [10].

Table 1 Parameter of rotor cases

Model | ¢,[m] | ¢, A1 | B.[°] | Chart
[m]

1 | 025|025 0 0 | Fig5

2 0.10 | 0.40 0 0 Fig.6

3 | 025 ] 025 | 0 30 | Fig.7

4 0.10 | 0.40 0 30 Fig.8
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Figure 5 Stability chart of undamped anisotropic rotor (Model 1)

In Fig. 6, the instability area of the Model 2 is presented. In this model, the position of the disk is
asymmetric on the shaft and the rotor is purely anisotropic. Therefore, the significant gyroscopic
moments will occur in the system. The increase of gyroscopic moments cause the stiffness of the rotor

stiffer and the instability range is wider.

1
. unstable
’-—:“a l'i]_ - “I:I
S 05} By = 0°
Z ®, |k f{=0.10m
§ o fo=0.40m
DD 1 2_. . 3 4 5 5]
£2/W1 at n=0

Figure 6 Stability chart of undamped anisotropic rotor (Model 2)

In Model 3, the anisotropic rotor with a thin disk attached symmetrically (¢, =¢, =0.25m) on the
shaft has different shaft orientation @, =0 and @, =30°: and the instability area of the model is plotted
in Fig. 7. In this case, the inclination of the disk will not be equal to zero. Therefore, the gyroscopic
moments still occur in the system, although they are negligible especially for lower values of , . For
further investigation, it is observed that the higher the coefficient of the element anisotropy of the shaft,

the higher is the shift of the instability area to higher frequencies due to the first and the second natural
frequencies. Nevertheless, the difference in the shaft orientation affects the reduction of the interval of

the instability range.
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The case of an anisotropic rotor with the disk located asymmetrically on the shaft ¢, = ¢, together
with the difference g, =30° in the shaft orientation is described in Model 4. The instability area of this

model is presented in Fig. 8. The parameters of the asymmetry position of the disk and the difference in
the shaft orientation show the same effect in shifting the instability area to higher frequencies but a
contrary effect in reduction the width of instability. While the asymmetric rotor increases, the
difference in the shaft orientation decreases the width of instability.

1

; Gy = 0°
205 (g = 30°
§ {1, =0.25m
.5 fo =0.25m
05 4 5 6
W gt =0

Figure 7 Stability chart of undamped anisotropic rotor (Model 3)

1 .
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;:'a fi]_ = “
205 Ba = 30°
= ®4lg .| /1 =0.10m
J= - 2'a=0
Z fo=040m
DID 1 2 3 4 5 &

/w1 atn=0

Figure 8 Stability chart of undamped anisotropic rotor (Model 4)

7. Conclusions
In the present investigation, a new model of anisotropic rotor with different shaft orientation has

been developed. The gyroscopic moments are taken into account. The stability chart of the model
shows that the location of the unstable area lies exactly in the range between the first and the second
natural frequencies. By increasing the element anisotropy, the range of the instability becomes wider.
By the difference in the shaft orientation in the rotor, the occurrence of the gyroscopic moments in the
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system is not significant or very small, but it contributes to the reduction of the interval of rotor
instability. The bigger the difference in the shaft orientation A3, the narrower is the range of the

instability area. The effect of the gyroscopic moments occurs significantly if the disk position is
asymmetric on the shaft. An increase in the gyroscopic moments causes the rotor to become stiffer and
the instability range wider.
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