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ABSTRACT 

 

This research deals with a new discrete model of anisotropic rotor. In case of an anisotropic rotor 

has the difference in the shaft orientation, in which the direction of the principal axis of the shaft 

cross-section in the left shaft end is different from the direction in the right shaft end. In order to 

simplify the developed model, the rotor is supported by rigid bearings. The effect of the 

gyroscopic moments must be taken into account, whether a rigid disk is attached symmetry or 

asymmetry on the shaft. The sources of the gyroscopic moments in the system are distinguished 

into two types. In the first type, the occurrence of the gyroscopic moments in the system is caused 

by the difference in the shaft orientation. In the second type, it is caused by the asymmetric 

position of a rigid disk on the shaft. The effects of the gyroscopic moments which come from the 

difference in the shaft orientation and the asymmetry position of the disk on the shaft have the 

different characteristics due to the stability of the anisotropic rotor. The stability chart of the 

rotor is considered through analysis of eigenvalues of the system. For purely anisotropic rotor, 

the stability chart of the model shows that the location of the unstable area lies exactly in the 

range between the first and the second natural frequencies. By increasing the element anisotropy, 

the range of the instability becomes wider. For anisotropic rotor with the difference in the shaft 

orientation, the occurrence of the gyroscopic moments in the system is not significant or very 

small, but it contributes to the reduction of the interval of rotor instability. 
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1. Introduction  

      In case of a purely anisotropic rotor, the shaft stiffness of the rotor is different in the vertical 

and horizontal directions. In this case, the phenomenon of the weight critical occurs during the rotating 

anisotropic rotor and it has been examined by many researchers [1]. The fundamental theoretical 

investigations of an anisotropic rotor and its corresponding differential equations of motion have been 

studied by Kellenberger [2] and Ariaratnam [3]. In order to describe its basic characteristic, Michatz [4] 

investigated a simple Jeffcott rotor model, in which the effects of external and internal damping on the 

rotor have been taken into account. In this model, the instability of the rotor can be described 

accurately. Yamamoto et al [5] investigated an asymmetrical rotor with inequality in stiffness (i.e. 

different cross-sections along the shaft) including the effects of gyroscopic moments. However, the 

directions of the principal axes of the cross-sections are uniform. In case of an anisotropic rotor with a 

constant cross-section along the shaft (i.e. a purely anisotropic rotor), the system can be still 

approached by a Jeffcott rotor model, although its cross-section is placed not in the principal axis of the 

cross-section as presented in [6]. 

If a real rotor with different cross-sections along the shaft is modelled by discrete elements, it is 

possible that the elements will have different orientations of principal axes. In this paper, an anisotropic 

rotor with the difference in the shaft orientation is investigated. The direction of the principal axis of 

the shaft cross-section in the left shaft end is different from the direction in the right shaft end. In this 

condition, the Jeffcott rotor is no longer a satisfactory model. Therefore, a new discrete model must be 

developed. In order to simplify the developed model, the rotor is supported by rigid bearings. 

Nevertheless, the effect of the gyroscopic moments must be taken into account, whether a rigid disk is 

attached symmetry or asymmetry on the shaft. The sources of the gyroscopic moments in the system 

are distinguished into two types. In the first type, the occurrence of the gyroscopic moments in the 

system is caused by the difference in the shaft orientation. In the second type, it is caused by the 

asymmetric position of a rigid disk on the shaft. The effects of the gyroscopic moments which come 

from the difference in the shaft orientation and the asymmetry position of the disk on the shaft will be 

studied. 

   

2. System Modelling 

In Figure 1, the rotor shaft is modelled by two discrete elements which have different orientations 

of the principal axes of the element cross-sections. The rotor is simply supported by two rigid bearings. 

In order to simplify the shaft anisotropy, a rectangular cross section of the shaft is used. The 

anisotropies of all shaft elements are the same. By using the minimal number of elements, the rotor is 

discretized into two elements with the length 1 and 2 , respectively. Therefore, the mathematical model 

can be simplified and possesses only four degrees of freedom, where the vibration of the shaft comes 

from only the motions ( ,,, WW
) of the disk. The disk is assumed to be a thin disk with a ratio 

between polar mass and axial mass moment of inertia of 1.98 (i.e. disk radius = 0.06 m, disk thickness 

= 0.01 m). In the whole system, the internal and external dampings are neglected. As a point of interest, 

although the disk is attached symmetrically on the shaft ( 1 = 2 ) and all elements have the same cross-

sectional moment of inertia, but because of different orientation between the shaft elements, the disk 

position makes a precession. In this case, the effect of gyroscopic moments is no longer negligible. 
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Figure 1 Anisotropic rotor with difference shaft orientation supported by rigid bearings 

 

Based on the Fig. 2, if the rotor is assumed that has the minimal number of discrete elements (i.e. 

shaft with two elements only) the subscribe k has a value 1 or 2.  

 
 

Figure 2 Coordinate system of anisotropic rotor 

 

Furthermore, the coordinate systems of the principal axes of the first and the second shaft element 

are placed on the *

1 - *

1 - plane inclined at an angle 1  and the *

2 - *

2 - plane at angle 2 . The centre of 

gravity S of the disk is eccentric to the centre of the shaft W and its position being defined by the 

eccentricity  and the angular position .  The kinematics relationships between the centre of gravity 

and the centre of shaft are 

 

sin

cos

WS

WS

yy

zz
  (1) 

 

The kinematics relationships between coordinates of principal axes and rotating reference frame of the 

k
th

-shaft element can be determined by using the following transformation equations 
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cossin

sincos

**

**

  (2) 

 

and between rotating and fixed reference frames can be determined by using transformation equations 

as follows 

    

.cossin

sincos

y

z
  (3) 

 

If a force acts on the rotor in arbitrary direction then this force is projected as F  in -direction and 

as F  in -direction. Furthermore, because of different shaft orientations, the force F  is projected 

again on the first element to *
1

F  and *
1

F  and on the second element to *
2

F  and *
2

F . In the same way, the 

force F  is projected on the first element to *
1

F  and *
1

F  and is projected on the second element to *
2

F  

and *
2

F . Furthermore, if the resultant of forces in *

1 -direction or *

2 -direction has a positive value, then 

bending moment *

1M  or *

2M  will have a positive value. On the contrary, if resultant of forces in *

1 -

direction or *

2 -direction has a positive value, then bending moment *

1M  or *

2M  will have negative 

value. In a moment diagram, the bending moments can be depicted as shown in Fig. 3. 

 

 

 
Figure 3 Bending moments in anisotropic rotor with different shaft orientation 

 

In order to simplify the mathematical model, the moments of inertia of cross-section in principal 

axes of shaft elements should be transformed to rotating reference frame by using the following 

equations 

 

kkkkkkk IIIIdAI 2cos**2
1

**2
12  

                         
kkI 2sin**
  (4a) 

kkkkkkk IIIIdAI 2cos**2
1

**2
12  

                         
kkI 2sin**
  (4b) 

kkkkkk IIdAI 2sin**2
1  

                         
kkI 2cos**
  (4c) 
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3. Gyroscopic Moments 

The differential equations of anisotropic rotor supported by rigid bearings have been formulated in 

the previous research [7]. As shown in Figure 4, the disk on the shaft is described in the coordinate 

system (x', y', z'), where the plane of disk is parallel to the y'-z'-plane. The x'-axis is perpendicular to 

that plane. Furthermore, y'-axis can move only in the x-y-plane and z'-axis in the x-z-plane, therefore y'-

axis and z'-axis can be not-perpendicular, where their position can make precessions z and
y
, 

respectively. This means the coordinate system (x', y', z') is no longer orthonormal.  

 

 
(a) 

 
(b) 

 

Figure 4 Coordinate of disk in anisotropic rotor system 

 

From the Figure 4, the transformation equations of basis vectors are obtained 
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Further, the kinematics relationships of angular velocities in (x', y', z')-coordinate system are 

determined. If angular speed of the disk is denoted by S  in the (x', y', z')-coordinate system, the y'-z'-

plane that rotates along the x'-axis is denoted by E  and   is the rotational speed of the shaft, then 

.'xES e


  (6) 

 

Furthermore, angular speed of basis vectors 
'ye


 and 'ze


 are 

'''''''''' zyzyyyxyxy eeeeeee











 (7) 

and 

'''''''''' zzzyzyxzxz eeeeeee











, (8) 

respectively. Note that, the expression in parenthesis is not a function argument but an alternative 

index. For an example, the 
''' xyx ee


  means the rotational speed of the vector 'xe


 due to y'-axis. Because 

the plane of disk is placed at the y'-z'-plane and the precession z  is the angle of the plane of disk with 

respect to the z-axis, hence 

 

zzy ee





'
.  (9) 

 

Similar to the Eq. (9), the precession 
y
 is the angle of the plane of disk with respect to the y-axis, 

hence 

 

yyz ee





'
. (10) 

 

By using the Cramer‟s rule, angular speed
'' yx e


 , 

'' yy e


 , 
'' yz e


 , '' zx e


 , 

'' zy e


  and '' zz e


  of the 

basis vectors can be determined. Based on the Figure 3, it is clear that the angular speed of the y'-z'-

plane is the rotational speed of the vector 
'ye


 due to z'-axis and the rotational speed of the vector 'ze


 due 

to y'-axis, hence the angular speed in Eq. (6) can be reformulated as 

 

'''''' zyzyzyE eeee





  . (11) 

 

By inserting the basis vectors of the results of the Cramer‟s rule and the Eq. (11) into the Eq. (6), the 

S  can be reformulated. Furthermore, the vector of angular momentum can be calculated 

 

SL  . (12) 

 

If the precessions z and
y
 are assumed to be small then 

 

yyazpxp eeL





   

      
zzayp e


  . (13) 

 

The time derivative of angular momentum in rotating reference frame can be rewritten as 
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


 2

pxp e
dt

dL
 

         ea
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 22  

          2

p  

         ea


 22  (14) 

 

4. Differential Equations of Motion 

The anisotropic rotor is modelled in rotating reference frame. Therefore, the rotor system becomes 

speed-dependent. The stability chart of the rotor is considered through analysis of eigenvalues of the 

system. In the developed model, the shaft stiffness matrix is assembled in the rotating reference frame 

by considering asymmetric bending by means of the strain energy method. In this paper, the 

formulation of the strain energy in asymmetric bending is not presented. For further information, this 

formulation can be found in [8] and [9]. 

The shaft is assumed to be massless, because the shaft mass is very light compared to the rotor 

mass. By using the minimal number of discrete elements, the size of the shaft stiffness matrix can be 

minimalized. For an anisotropic rotor with single disk, the shaft is discretized by two elements only. 

The flexibility influence coefficients (
ijh ) of the shaft are obtained as follows 

dxxMxM
IIIE

I
h jkik

k kkk

k

ij
k

ˆˆ
2

1
2

 (15a) 

 for 4,1i  and 4,1j  
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I
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 for 3,2i  and 3,2j  

dxxMxM
IIIE

I
h jkik
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k

ij
k

ˆˆ
2

1
2

 (15c) 

 for 4,1i  and 3,2j  

 

where E is the Young‟s modulus of the shaft material, k is the length of shaft element and M̂ is 

normalized moment bending. The flexibility matrix can be obtained by assembling these flexibility 

influence coefficients. The stiffness matrix is determined by inversion of the flexibility matrix. 

Furthermore, the differential equations of translatory inertia (i.e. in the  and -directions) in the 

rotating coordinate system can be determined by using 2
nd

 Newton‟s Law, hence 

 

n
nSSSS

SSSS

Fem

em

.2

2

2

2







 (16) 

 

Note that, the Eq. (16) is still defined in the centre of gravity of the disk. The differential equations of 

rotary inertia (i.e. in the  and -directions) can be obtained by using the formulations in the Eq. 

(14) and the stiffness matrix especially in the  and -directions. 

In general, the differential equations of motion of the rotor can be witten as 
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FqCqDqM   (17) 

 

where D  and C  are speed-dependent proportional matrices due to velocity and displacement, 

respectively.  

 

5. Stability Investigation 

The stability of the rotor system is considered based on the homogenous linear equations of motion 

of the rotor in the Eq. (17), hence 

 

0qCqDqM  . (18) 

 

This equation can be rearranged in state-space in order to reduce the differential equations to first-

order. 

 

0

0

0

0

0 q

q

C

M

q

q

C

CD




 (19) 

 

For simplification in writing, the Eq. (19) can be written as 

 

0rBrA  . (20) 

 

By solving the Eq. (20), the eigenvalues and eigenvectors can be considered. The eigenvector in 

this solution is usually called as right eigenvectors. In stability analysis, the solution of eigenvalues 

according to Eq. (20) is already sufficient. Usually, the eigenvalues are complex frequencies consisting 

of a real part (i.e. defined as decay rate, where it decreases amplitude in time) and an imaginary part 

(i.e. natural frequencies). An instability condition is involved if at least one of the real parts of the 

eigenvalues is positive value. 

 

 

6. Case study and Discussion 

As depicted in Fig. 1, the rotor shaft is modelled by two discrete elements which have different 

orientations of the principal axes of the element cross sections. The rotor is simply supported by two 

rigid bearings. In order to simplify the shaft anisotropy, a rectangular cross section of the shaft is used. 

The anisotropies of all shaft elements are the same and are defined as 

 

**

**

II

II

W . (21) 

 

In the numerical simulation, the coefficient W  of the element anisotropy is varied from 0 to 0.99. 

The width of the rectangular cross section is defined to be constant (e.g. 8b mm) and the thickness h 

of the cross section is formulated as 
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W

Wbh
1

1
 (22) 

 

A rigid disk is also attached on the shaft at the distance 1  from the left shaft end or 2  from the 

right shaft end. The disk is assumed to be a thin disk with a ratio between polar mass and axial mass 

moment of inertia of 1.98 (i.e. disk radius = 0.06 m, disk thickness = 0.01 m). In the whole system, the 

internal and external dampings are neglected. 

Furthermore, four cases of anisotropic rotors are discussed in this section. First, the simulation of a 

purely anisotropic rotor ( 0 ) supported by rigid bearings is performed. A disk is attached in the 

centre of the shaft. Similar to the investigation above, the model is analyzed to obtain the 

characteristics of stability through eigenvalue analyses of anisotropic rotor without gyroscopic 

moments acting on the system. In the other models, the effects of gyroscopic moments are taken into 

account. These effects are also distinguished into two types. In the first type, the disk is not attached in 

the centre of the shaft and the gyroscopic moments come only from the asymmetry of the rotor. This is 

simulated in Model 2. In the second type, the gyroscopic moments come only from the difference in the 

shaft orientation as simulated in Model 3. Finally, both sources of the gyroscopic moments from the 

asymmetry of the rotor and the difference in the shaft orientation are taken into account in Model 4. 

The parameters of the four rotor cases are listed in Table 1. 

In case of the purely anisotropic rotor, the instability area as depicted in Fig. 5 lies exactly in the 

range between the first and the second natural frequency of the anisotropic rotor. The coefficient of the 

element anisotropy is varied between 0W  and 0.99. At each coefficient of the element anisotropy, 

the first and the second natural frequencies are considered as the forward whirl speeds at rotational 

speed 0 . These natural frequencies have been normalized by the first natural frequency. Because of 

purely anisotropic along the rotor shaft, the first and second natural frequencies of the rotor correspond 

to the mode of U-form of the shaft bending in each direction of shaft cross-section. At the third and the 

fourth natural frequencies the rotor modes have S-form of the shaft bending and no instability exists. 

The instability area depicted in Fig. 5 is equivalent to the case of a purely anisotropic rotor investigated 

in [1] or [10]. 

 

Table 1 Parameter of rotor cases 

Model 
1 [m] 2

[m] 
1 [

o
] 2 [

o
] Chart 

1 0.25 0.25 0 0 Fig.5 

2 0.10 0.40 0 0 Fig.6 

3 0.25 0.25 0 30 Fig.7 

4 0.10 0.40 0 30 Fig.8 
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Figure 5 Stability chart of undamped anisotropic rotor (Model 1) 

 

In Fig. 6, the instability area of the Model 2 is presented. In this model, the position of the disk is 

asymmetric on the shaft and the rotor is purely anisotropic. Therefore, the significant gyroscopic 

moments will occur in the system. The increase of gyroscopic moments cause the stiffness of the rotor 

stiffer and the instability range is wider.  

 

 
 

Figure 6 Stability chart of undamped anisotropic rotor (Model 2) 

 

In Model 3, the anisotropic rotor with a thin disk attached symmetrically ( 25.021  m) on the 

shaft has different shaft orientation 01 and o301  and the instability area of the model is plotted 

in Fig. 7. In this case, the inclination of the disk will not be equal to zero. Therefore, the gyroscopic 

moments still occur in the system, although they are negligible especially for lower values of W . For 

further investigation, it is observed that the higher the coefficient of the element anisotropy of the shaft, 

the higher is the shift of the instability area to higher frequencies due to the first and the second natural 

frequencies. Nevertheless, the difference in the shaft orientation affects the reduction of the interval of 

the instability range.  
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The case of an anisotropic rotor with the disk located asymmetrically on the shaft 21   together 

with the difference o301  in the shaft orientation is described in Model 4. The instability area of this 

model is presented in Fig. 8. The parameters of the asymmetry position of the disk and the difference in 

the shaft orientation show the same effect in shifting the instability area to higher frequencies but a 

contrary effect in reduction the width of instability. While the asymmetric rotor increases, the 

difference in the shaft orientation decreases the width of instability. 

 

 
 

Figure 7 Stability chart of undamped anisotropic rotor (Model 3) 

 

 
 

Figure 8 Stability chart of undamped anisotropic rotor (Model 4) 

 

 

7. Conclusions 

In the present investigation, a new model of anisotropic rotor with different shaft orientation has 

been developed. The gyroscopic moments are taken into account. The stability chart of the model 

shows that the location of the unstable area lies exactly in the range between the first and the second 

natural frequencies. By increasing the element anisotropy, the range of the instability becomes wider. 

By the difference in the shaft orientation in the rotor, the occurrence of the gyroscopic moments in the 
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system is not significant or very small, but it contributes to the reduction of the interval of rotor 

instability. The bigger the difference in the shaft orientation , the narrower is the range of the 

instability area. The effect of the gyroscopic moments occurs significantly if the disk position is 

asymmetric on the shaft. An increase in the gyroscopic moments causes the rotor to become stiffer and 

the instability range wider. 
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