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ABSTRACT

The most commonly used tuning strategy for a model predictive control (MPC) is by introducing a
move suppression coefficient to prevent excessive changes in manipulated variables. However, this
approach involves the iterative selection of certain parameters that are not well defined, and therefore
demands sound understanding of the theoretical formulations. This procedure may lead to suitable
process close loop responses. A more advanced approach is the use of constrained optimization methods
which are computationally demanding in nature making it less suited for tight control of fast processes.
In this paper, an effective tuning strategy for predictive control, i.e. shifting method, is proposed which
leads to the reformulation of the original predictive control structure. The inherent ill-conditioning is
eliminated by allowing the process prediction time step to be decoupled from the control time step. The
original open loop data is used to evaluate a “shifting factor' m to be applied to the dynamic matrix
structure, which replaces the move suppression coefficient.

The results show that the proposed tuning strategy gives improved closed loop responses for
control simulations on a multivariable non-linear process having variable dead-time, and on other
models found in the literature. The algorithm was also practically demonstrated on a fast reacting
process and multi input multi output (MIMO) slow reacting plant, i.e. DC motor rotational speed control
and a pilot scale distillation column, respectively, with better control being realized in comparison with
DMC using move suppression. A major benefit of this proposed method is that only minor modification is
required in order to implement this tuning strategy into the existing un-constrained control algorithm. It
also eliminates the need for computationally intensive optimization of move suppression and uses purely
open loop process data for tuning. The shifting factor m is generic, therefore it can be effectively applied
for any control horizon and any processes.

Keywords: tuning strategy, dynamic matrix control, move suppression, shifting factor, shifted
DMC
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1. Introduction

Over the past decades, there have been tremendous advances in process control
methodologies driven by the need for processes to become more efficient and cost
effective. Further developments of modern control theory have resulted in its successful
application in the aerospace and aircraft industries, as well as the manufacturing sector.
The most significant advancement of modern control systems over the classical control
theory is that they are not limited to single input single output (SISO) systems, but also
available for a wide range of multi input multi output (MIMO) systems [1]. The significant
improvement of digital computer performance, with prices falling considerably, has also
contributed to the advances in process control.

The only advanced control methodology that has had a significant impact on
industrial control engineering is predictive control [2].Predictive control is a model-based
controller in the sense that it uses an explicit model obtained by applying linear system
identification techniques to plant data, in order to predict the future plant behavior [3].

Over the years, several model based predictive controllers have been developed and
implemented in a wide variety of applications including food processing, automotive,
petrochemical refineries, aerospace and pulp and paper [4],[5],[6]. Among several
algorithms belonging to the model based predictive controllers, dynamic matrix controller
(DMC) is arguably the most popular advanced control strategy employed in industry to
date [7],[8].[9],[10]. It has been implemented and tested with much success on a wide
variety of applications over the last decades. The DMC tuning strategy involves a number
of adjustable parameters that can affect the process closed-loop dynamics. These include
the prediction horizon P, control horizon n,, model horizon N, sampling interval T and
move suppression coefficient A.

The tuning strategies range from systematic trial and error [11] to formal tuning
strategies such as move suppression coefficient [12] and input blocking [13]. A method of
selecting the prediction horizon P, model horizon N and control horizon n, was presented
by Cutler [14]. It was proposed to set P=N+ n, and then continually increase n, until
further changes in n, have no further effect on the first control move in the evaluated
control vector. The main tuning variable is then a move suppression coefficient A which is
then chosen iteratively. Increasing A reduces the size of the manipulated input changes
generated by the controller and hence, slows down the closed-loop response.

An off-line unconstrained DMC tuning strategy for SISO and MIMO processes was
proposed by Shridhar and Cooper [15][16]. They confirmed that the move suppression A
can serve as the primary adjustable parameter in DMC tuning for fast and slow reacting
processes. An analytical expression to compute A was derived irrespective of the choice of
other tuning parameters resulting in modest manipulated variable changes, and therefore
relatively slow close loop transients.

A simple and an effective adaptive tuning of move suppression A was developed for
an injection molding sub cycle, i.e., screw speed rotation and melt temperature control
[17]. The process response is close to critical damping during its transient state, therefore
providing fast settling and reduced overshoot. The only drawback with this method is the
evaluation of the first value of A which depends on initially calculating the closed-loop
variance after three or more samples of the plant output before active implementation.

Move suppression A was also demonstrated to be an effective tuning parameter for
integrating (non-self regulating) processes [10]. The controller exhibited a good setpoint
tracking without overshoot, fast rise time as well as effective disturbance rejection.
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However, the application of this tuning strategy was demonstrated only through
simulation.

A wealth of information relating the changes in these tuning parameters and their
effects on the closed-loop response, indicate a continued interest towards tuning strategies
of model predictive controllers. It is clear that in order for equipment and process operators
to implement the more advanced tuning strategies, sound knowledge of the advanced
predictive control concepts and the corresponding tuning strategy must be acquired. This is
particularly due to the presence of ambiguous variables used in these advanced tuning
schemes, such as the move suppression A, and therefore demands very good understanding
of the theoretical formulations for their iterative selection. Moreover, most of the tuning
methods are computationally demanding and hence are less suited to control of fast
processes. Therefore, it is justified to say that there is a need for a simple and effective
tuning strategy which is not computationally demanding, requiring minimum effort for
implementation.

2. Predictive Control Theory

Predictive control which also known as model-based predictive controllers (MPC)
can be illustrated in Fig. 1. The future outputs are predicted at each sampling instant t using
a process model. The prediction outputs have two main components, the free response and
the forced response. The free response is the expected behavior of the plant due to past
inputs and outputs assuming there is no future control actions or deviations. The forced
response is the additional component of the output response due to a set of future control
actions.
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Figure 1. General MPC architecture

The difference between the predicted outputs and the reference trajectory is termed
future errors which are to be minimized, taking into account the cost function as well as the
constraints. The future errors can be illustrated more detail in Fig 2. These errors are
formulated in an objection function subjected to given constraints in the magnitude of the
control moves and its changes. The least squares method is used for the error minimization
since the number of unknowns exceeds the degrees of freedom.
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Figure 2. Predicted errors over the prediction horizon P
The objective function can be expressed as follows,

=)
Jype =min< > | vie+k)—p(e+k(e) | +
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The first term in Eq. 1 is the difference between the desired trajectory vector yand
the predicted process output § giving the future vector of errors e, over a prediction
horizon P. This horizon represents the number of discrete sampling instants that the
process is predicted in the future. The second term is the changes in the control moves or
manipulated variables, which are to be evaluated over a control horizon n,. The value of P
is based on an open loop testing using a step or multi-step inputs to the process to be
controlled. The manipulated variable changes in Au are evaluated over a control horizon n,
which is the number of manipulated variables changes to be determined in the future. The
evaluation of Au depends upon the process response obtained from open loop tests. This
response is then normalized and expressed as a dynamic matrix A in Eq. 2 for SISO
control.
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The move suppression coefficient 2 is introduced to avoid excessive changes in
the manipulated variable due to the ill-conditionality of the system matrix A’ A. Using the
least squares method, Eq. (2) yields a solution known as the DMC control law,

Au= ATA+IA " y—§ ©)
subject to the following constraints,
AU, SAU<AU,.

min —

p @

Using AU the prediction of the process output or controlled variable is calculated using

Upin SU<U
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with ¢(t) an adjustment parameter that accounts for process non-linearities. Further details
of the DMC control theory can be found in [14].

3. Proposed Tuning Strategy

The DMC algorithm uses normalized open-loop response coefficients to form the
dynamic matrix A for its process predictions as well as future errors calculations. Open
loop response data is obtained by inputting defined changes of the manipulated variable,
and then sampling the process as fast as possible with respect to the practical limitations of
the system. This approach is generally used in order to capture the full dynamics of the
process, and therefore provides an accurate representation of the continuous response.
These sampled and normalized response coefficients form a dynamic matrix A, in which
the difference ¢ between elements of the corresponding rows in A or corresponding
columns in AT is generally very small. In predictive control such as DMC, the evaluation of
Au without move suppression depends on ATA. Since ¢ is small, the matrix A'A becomes
highly ill-conditioned. In other words, closed-loop control becomes increasingly ill-
conditioned as the sample time, A4z, is reduced, resulting in the manipulated variables
becoming excessively large. It is now clear that the ill-conditioning of AA can be reduced
by increasing €.

Define a shifting factor m>1 to be applied to the dynamic matrix A where the
second column of A is shifted downwards by m>1 followed by the same for subsequent
columns. Now the re-formulation of A of a SISO process in terms of the shift m, for n,=2,
gives Eqg.6

a 0
a 0
A=l T (6)
a‘m+l a1
a‘m+P a‘P _

Where m-1 extra zeroes in the second column are indicative of the m-shifting. A'A
immediately follows as

If Az is the sampling time and let T=P At, w=m At and consider A¢ -0, then for a prediction
horizon P>>m, ATA can be expressed as
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Using linear algebra manipulation, Eq. 8 yields Eq. 9 for large T
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By shifting the 2" downward by m, the second prediction during predicting the future
errors will then be shifted to right by m time units, as illustrated in Fig. 3.
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Figure 3. Predicted errors over the prediction horizon P after m shift

Using the same approach as the original DMC, the solution of the errors minimization is
given by

Au= (ATA)TAT(y - 9) (10)
It is clear that calculated manipuated variable obtained from Eq. 10 yield the original DMC
control law without move suppression. Therefore, implementation of the new approach to
the existing DMC algorithm can be easily performed.

4. Results and Discussions
The validation of the proposed algorithm was demonstrated through control
simulations of several higher order SISO processes from [9] and MIMO pilot scale
distillation column. Practical implementation was also conducted on a DC motor speed
control system. The plants used for control simulations were
Process 1: G, ¢ = $05+1€ - (11)

€00s +1°

- e—lOs

~ ¢00s+1"
Process 1 represents a plant with minimum phase behaviour while process 2 is a

fourth order process with sluggish open loop dynamics. First order plus deadtime (FOPDT)
approximation to the above processes yield the following process parameters:

Process2: G, € (12)
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o Kp =1, 7p= 148, 6,=18 and A1=0.14, m=2 (process 1)
e Kp =1, tp= 124, 6,=99 and A1=0.15, m=3 (process 2)

Figures 4,5 and 6,7 show the results of the algorithms for performing control
simulations for both shifted and move-suppressed DMC application and its corresponding
manipulated variables for processes 3 and 4, respectively. It can be seen that introducing
the shifting factor m is simple and effective while yielding stable process responses with no
excessive changes in the control moves, yet faster than the original DMC using move

suppression factor.
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Figure 4. Process 1 response using shifted and move-supressed DMC
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Figure 5. Process 1 manipulated variable using shifted and move-supressed DMC

Response

1.2 7

1 4

0.8

0.6 4

044

0.2

0

—————— DMC using m
——— DMC using &

0

100 200 300 400

Time (5]

Figure 6. Process 2 response using shifted and move-supressed DMC
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Figure 7. Process 2 manipulated variable using shifted and move-supressed DMC
The proposed algorithm was also implemented on a much harder to control process,

i.e. MIMO distillation column, developed by Wood and Berry [18] which has been
extensively used in the literature. The distillation column plant is given by,

’7 . (s) —‘ ’7 12 5e—* —15.0=—% —I w (s) —‘

e — 16.Ta+ 21a+1 | A (13)
o (8] €6e77F  —104e7% | | 0oy
LR 10.05+1 4 45=1 H2 A=)

Figure 8 shows the application of shifted DMC on the plant given by Eqg. 13 with
good results. A shifting factor m of 20 was used for control simulation of distillation
colums.
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Figure 8. Response of distillation column plant

For real time application, a defined input was sent to the motor DC speed control to
obtain open loop response coefficients to form the dynamic matrix A. Closed-loop testing
was then conducted using the move-suppressed DMC with A=0.07, as well as with the
shifted DMC with m=12. The process responses in Fig. 9 indicate much shorter rise time
and settling time with no oscillations when using the proposed method. It is worth
mentioning that the relative ease of tuning becomes apparent since A can vary by as little as
of 0.001, as compared to m varying by 1.
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. Figure 9. Speed control of DC motor using shifted and move-supressed DMC

5. Conclusions

A new approach of tuning predictive control using a new variable termed shifting
factor m is developed. This new method reformulates the fundamental design of original
unconstrained dynamic matrix control by de-coupling the prediction and control time steps.
The application of the proposed method on both control simulation and real time
demonstrate better control performance as compared to the move-suppressed DMC.
Reduced rise and settling time as well as minimum overshoot were achieved when
implemented for either SISO or MIMO plants. This method is also readily introduced to
the existing algorithm with minor modification.

References

[1] Chu, J., Su, H., Gao, F., Wu, J., Process control: art or practice, Annual Reviews in
Control, 22 (1998) 59-72

[2] Maciejowski, J.M., Modelling and predictive control: enabling technologies for
reconfiguration, Annual Reviews in Control, 23 (1999) 13-23

[3] Camacho, E.F., Bordons, C., Model Predictive Control, Springer Verlag, London, 1999

[4] Dubay, R., The Utilization of Model Predictive Control for a Plastic Injection Molding
Machine, PhD Dissertation, Dalhousie University, Canada, 1996

[5] Qin, S.J., Badgwell, T.A., An overview of industrial model predictive control
technology, Proceeding of the 5" Int. Conf. on Chemical Process Control, AIChE
Symposium Series 93, Tahoe City, CA (1997) 232-256

[6] Zheng, A., Robust stability analysis of constrained model predictive control, Journal of
Process Control 9 (1999) 271-278

[7] Brosilow, C., Joseph, B., Techniques of Model Based Control, Prentice Hall, Upper
Saddle River, NJ, 2002

[8] Morari, M., Lee, J.H., Model predictive control: past, present and future, Computers
and Chemical Engineering, 23 (1999) 667-682

[9] Shridhar, R., Performance Based Tuning Strategies for Model Predictive Controllers,
PhD Dissertation, University of Connecticut, 1998

[10] Dougherty, D., Cooper, D., Tuning guidelines of a dynamic
matrix controller for integrating (non-regulating) processes, Ind. Eng. Chem. Res., 42
(2003) 1739-1752

[11] Ricker, N.L., Model predictive control: state of the art, Proc.
of Chem. Process Control Conf, 4™ Intern. Conf. on Chem. Process Control, Holland,
1991

[12] Marchetti, J.L., Mellichamp, D.A., Seborg, D.E., Predictive

31



Seminar Nasional Tahunan Teknik Mesin (SNTTM) VIII

Universitas Diponegoro, Semarang 11-12 Agustus 2009

control based on discrete convolution models, Ind. Eng. Chem. Process Des. Dev., 22
(1983) 488-495

[13] Ricker, N.L., Use quadratic programming for constrained
internal model control, Ind. Eng. Chem. Process. Des. Dev., 24 (1985)

[14] Cutler, C.R., An Optimal Multivariable Control with
Constraints, PhD Dissertation, University of Houston, Houston, 1983

[15] Shridhar, R., Cooper, D.J., A tuning strategy for

unconstrained SISO model predictive control, Ind. and Eng. Chemistry, 36 (1997) 729-
746

[16] Shridhar, R., Cooper, D.J., A tuning strategy for
multivariable model predictive control, ISA Transactions, 36 (1998) 273-280
[17] Pramujati, B., Dubay, R., A novel tuning method for

predictive control of melt temperature and plastication screw speed in injection
molding, Journal of Injection Molding Tech., 6 (2002) 247-258

[18] Wood, R.K., Berry, M.W., Terminal composition control of a
binary distillation column, Chem. Eng. Sci., 28 (1973) 1707-1717

Keywords: tuning strategy, dynamic matrix control, move suppression, shifting
factor, shifted DMC

32



