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Abstract 
In this paper, controlling a rigid robot manipulator driven by hydraulic system is considered. Due to 
changing of inertia moment of the manipulator as well as the effect of fiction of hydraulic system, the 
dynamics of the robot arm is highly nonlinear. Therefore sliding mode control method is applied. Sliding 
mode control is a robust control method. It provides a symmetric approach to the problem of maintaining 
stability and consistent performance in the face of modeling imprecision.  Nummerical simulations of the 
control system are represented. The results show the extremely good robustness of the proposed method. 

 
Index Terms—Hydraulic robots, Control of robot manipulators, Sliding mode control, Servo-hydraulic 
control. 

 
 
 
INTRODUCTION 
Hydraulic robots and machinery are widely used in the construction and mining industries as crane, 
excavator, robotic [5], [12], [13], [14]... They have rapid responses and high power-to-weight ratios 
suitable for many applications. Furthermore, the potential complexity of such controllers is becoming 
less and less of an implementation issue due to the inexpensive and powerful processors available 
today for real-time control. 
 
Unfortunately, the control of hydraulic manipulators is more challenging that of their electrical 
counterparts because of the highly nonlinear hydraulic dynamics [8], [9]. Non-linear characteristics 
originate from the compressibility of the fluid and complex characteristic of servo valve. In addition, 
significant uncertain nonlinearities such as external disturbance, leakages and friction are unknown 
and can be not modeled accurately. Therefore the classical control methods as PI, PID… can be not 
applied effectively to control hydraulic manipulators as hydraulic actuators cannot accurately apply 
forces or torques over a significant dynamic range. It is very important to find a suitable nonlinear 
control method to hydraulic manipulators. In this paper, a sliding mode control is applied to control a 
single rigid manipulator driven by electro-hydraulic system. 
 
Sliding mode control (SMC) or also called variable structure, is a nonlinear control method, which 
provides a symmetric approach to the problem of maintaining stability and consistent performance in 
the face of modeling imprecision and disturbances [1],[2],[3],[7]. Many papers used this method to 
control and showed good results with the effects of un-modeled parameters. In [2], sliding mode 
control is applied to control a flexible load. To enhance control performance, sliding mode control 
combined with fuzzy PI controller [6]. But most of them used a symmetric cylinder and so the 
dynamic of system became simpler as well as controlling. When an asymmetric cylinder is applied, 
dynamics of the system becomes more complex and using sliding mode control with only a feedback 
of their position is more difficult. So a new approach of sliding mode control is used. In this way, both 
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errors of position and load pressure is feed backed to design a controller [2], [3]. This method so far 
just applied for applications of straight motions, not for manipulators. 
 
In this paper, the method originates from [2], [3], and is applied to control a single rigid manipulator. 
Angle of the manipulator is tracked by following a desired reference angle. Here, pressure between 
two chambers of cylinder is combined to create a load pressure error of load pressure. Errors of load 
pressure and angle position are applied to design a controller. Numerical simulation is presented and 
gives a good tracking. 
 
The rest of the paper is organized as: section II introduces dynamic formulation and problem 
statement, Controller design is shown in section III. Section IV shows the simulation results and 
section V concludes the paper. 
Dynamic formulation and problem statement 
This paper focuses on the single rigid arm control driven by hydraulic system. The coordinate systems, 
joint angles and physical parameters of the system are defined as in Fig. 1. The kinetic (T ) and 
potential (U ) energy of the arm can be determined as [10],  
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Applying the Lagrange’s method, the equation of motion are obtained as 
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Figure 1: Schematic of the single rigid arm 
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where R
θ
is the generalized force corresponding to the generalized coordinateθ . 
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T θ& is the torque due to friction, is expressed into [3]. 
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with 1b and 2b  are coefficient. 

f
τ is the torque of the hydraulic actuator force F on the arm. 
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with y is a new variable and is calculated from Fig.1 
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and the force F that is applied by the cylinder to the arm is simply  
 

1 1 2 2F P A P A= −    (7) 

where 1P and 2P are the head and rod end pressure of the cylinder, 1A and 2A are the head and rod areas of 

the cylinder respectively. 
Substituting Eqs. (1), (3)-(7) into Eqs.(2), gives the equation of the single rigid arm. 
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The schematic of the hydraulic servo system driving the single rigid manipulator is showed in Fig.2. 
Here sP and rP are the supply pressure and the tank reference pressure. 

 
For simplicity, a first-order equation of servo valve is represented in this study [12]. The spool valve 
displacement vx  is related to the current input I by  

 v v v Ix x K Iτ = − +
&

                                               (9)      

where vτ and vK  are the time constant and gain of the servo valve respectively. 

 
The amount of fluid flow to the head-side 1Q and from the rod-side 2Q of the cylinder is a function of 

both the valve spool position and cylinder pressures. The relationship can be expressed in the 
following form [8]: 
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where qk is the flow gain coefficient of the servo valve, 1g and 2g are functions of vx and 1 2,P P . 
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Applying the flowing continuity equations to the two sides of the cylinder and neglecting any external 
leakage [8]: 
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where eβ is the effective bulk modulus, tmC  is the coefficient of the internal leakage of the cylinder, 

0V is the dead volume of the fluid inside each chamber of the cylinder, x  is the displacement of the 

cylinder and is a function of y . 

 
 
 
Define a state vector for the system as follows: 
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   Figure 2:  Hydraulic servo system 

 
By combining (8)-(13), gives the following nonlinear state-space model of the system: 
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We define a load pressure as 

 

 2
3 1 2

1

ˆ
A

x P P
A

= −   (16) 

So new state vector of the system is 1 2 3ˆ
T

x x x x=    . Now we state the control problem of this system 

follows. A controller has to be designed such that the operating state vector 1 2 3ˆ
T

x x x x=     tracks 

asymptotically a desired state vector 1 2 3ˆ
T

d d d dx x x x=    which is predetermined with a finite control 

input I in the presence of uncertainty of the system. 
Sliding mode controller design 
1. Design for switching surface 
 
From equation (14), on realizes that the dynamics the system is highly nonlinear. To enhance the 
system performance, the following surface is defined [2],[3]: 
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c c
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        (17) 

      
where ce is the combination of position error and load pressure error described as follows: 
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where 
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Control block diagram is shown in Figs. 3. 1 3,x x and 4x are sent back by sensors to design a controller 

to track following the desired input 1dx . 
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Figure 3: Control block diagram 
 

Taking the derivative of 1e and 3e , gives 
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with     
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The assumptions of this method are described as follows: 

1) 
ˆˆ , , 2,3,4, 1, 2, 3,4.
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&& &&  are bounded and known 

where ˆ
ija and b̂ are calculated by the nominal parameters of the system. ijα , β andγ , the upper bound 

of the parameter uncertainties are known. 
 
The desired position and differential pressure and their derivatives are previously available (or 
assigned). The desired pressured 3ˆ dx is assumed to be: 
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Where [0,1]cf ∈  which is introduced to average the peak error of 1e .  

 
2. Sliding mode controller 
a. Theory 
 
Before developing the proposed controller, the following analysis of sliding surface dynamics of 
equation (17) is given. One sufficient condition for the asymptotic performance of the dynamical 
system of equation (17)-(19) is achieved in the following theorem: 
 
Theorem: If the dynamics of a sliding surface satisfy the condition 0s →  for 1t t> , then 0ce → as 

∞→t . 
 
Proof: First, the following Lyapunov’s  function is defined: 
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Taking the time derivative of ( )s cV e  and substituting ce& in Eqs. (17) and 0s →  for 1t t>  , gives       
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.

cs eV for 1t t> , ce  is bounded for 1t t> , then from Eqs (18), e1 and e3 are bounded for 1t t> . 

From the assumptions 1-3, 1( )e t&  is bounded for 1t t> .Using Eqs. (18), 
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Because 1e& , 1e  and 3e  are all bounded, ce& is bounded 
1tt >∀ . Hence, by applying Barbalat’s lemma [7], 

ce 0→  as ∞→t . 

 
 b. Design the control law  
 
The control law 
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The equivalent control law  
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and a discontinuous is added to (27a) 
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c. Stability Analysis 
 
Assume that a Lyapunov’s function is described as follows: 

                   0
2

1
)( 2 >= ssV ,     for 0s ≠                                (28)                                                                     

To achieve perfect tracking, all system trajectories have to converge to s in finite time and stay on s 
afterwards, the condition is     

                     0)(
.
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Taking the time derivative of  ( )V s of Eqs.(28) gives 

                   
. .

( )V s s s=                                                               (30) 

 
Combining with Eqs (17)-(27) gives 
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Substituting the control law Eqs.(27) into Eqs (31) gives: 
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By choosing the gain K      
                      η+= FK       , η > 0                                           (35)                                                         

The inequality (33) becomes 

                ssV η−≤)(
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.
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Therefore  0s →  for any 1t t> and from the theorem above, 0ce → as ∞→t . 

 
Numerical Simulation  
1. Simulation 
An electro-hydraulic servo-system with the nominal parameters: L  = 2m, l  =  0.98m, l0  =  0.85m, α  =  
1000, m  = 20kg, M = 22kg, b1  = 2Nm , b2  = -3Nmrad-1s, Ps = 315e5Pa, e  =  15e9β ,   A1  = 0.002m2, A2  

= 0.001m2, V0  = 5e-4m3, L0 = 1m, 3 -1
tmC =2e-12m s Pa , kq=1.5370e-5, I K = 5e-4 , 0.0025τ =   

is simulated by the fourth-order Runge-Kutta method with 0.005cT s= time interval. The initial value 

of state is 0 T[0] [15 0 200e5 300e5]x = . Figs. 4-7 show the results which the system tracks the reference 

step input response 0
1 30dx = . The results with a reference sinusoidal input 1dx  =22.5+7.5sin(0.5 t) π are 

shown in Fig. 8-11. 
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Figure 4: Position tracking   Figure 5: Position tracking error 
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Figure 6: Switching function S(x,t) Figure 7: Control input u 
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Figure 8: Position tracking  Figure 9: Position tracking error 

0 5 10 15
-0.4

-0.2

0

0.2

0.4

Time (s)

 S
w

it
c

h
in

g
 s

u
rf

a
c

e
 S

 

0 5 10 15
-50

0

50

Time (s)

C
o
n
tr

o
l 
la

w
 u

 (
v
o
l)

 
Figure 10: Switching function S(x,t)  Figure 11: Control input u 

2. Discussion 
The good tracking results are achieved for both step and sinusoidal inputs (see Figs. 4 and 8). Even 
with uncertain parameters, the angular position of the electro-hydraulic servo-system can 
asymptotically track the desired time-varying trajectory. Its angular position maximum error is 
between -0.020 to 0.020 (see Figs.5 and (9). The operating point of system is convergent to the 
neighbourhood of the sliding surface (see Figs. 6 and 10).  Control inputs for two cases are quite 
smooth enough (see Figs.7-11). 
Conclusion 
A sliding mode control is applied to a rigid manipulator. The combination of angular position error 
and the load pressure error can be asymptotically tracked even when the system is subject to parameter 
uncertainties. Numerical simulation results have shown good performances of tracking. 
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