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ABSTRACT

A higher-order compact schemes originally developed by Wilmand Demuren (1998) has been
reproduced for solving steady natural convection for 2-D problem. The method is based on low-
storage Runge-Kutta schemes for temporal discrezation and fourt-order compact finite difference
schemes for spatial discretization. Difficulty related to the pressure can be overcome by using

artificial compressibility method. For high Rayleigh Number(107—108) the result have a good

agreement with the result obtain by Le Quere.
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INTRODUCTION
1. Governing Equation for Natural Convection

In two dimensional form, the governing equation for natural convection can be written as follows
(Le Quere,1990):
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These equation was written non-dimensional form where variables were divided by their
reference values, the length Lr = H, velocity Vr = (a/H)Ra™®®, Rayleigh number Ra = (gBATH’)/(va),
reference time tr = (H%a) Ra®®°. For temperature, the following definition were applied: 6 = (T-
Tr)/(Th-Tc), Tr = (Th+Tc)/2 and Pr = (v/a).

2. Time discretization
Time discretization for momentum equation employed Runge- Kutta scheme of orde-4 from
Williamson and Demuren (1998) defined as follows:
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UM+1 = MM + bM+1AtHl.A/[ (5)
where:

At = time step

b = Runge-Kutta scheme coefficient

a" = Runge-Kutta scheme coefficient

u™ = komponen kecepatan arah x; pada sub tingkat ke-M

P =pressure

Hl.M :—ujé'xul,M —aP" + E.s Su +a'H"

Ra
Table 2.1 Runge-Kutta scheme coefficient orde-4 from Carpenter and Kennedy
M a" B
0 0.14965902

-0.41789047 0.37921031
-1.19215169 0.82295502
-1.69778469 0.69945045
-1.51418344 0.15305724

G| | W DN -

3. Space descritization

Skema beda-hingga orde-2 untuk turunan pertama memiliki galat dispersi yang besar, sedangkan
skema kompak beda hingga memiliki kelebihan yaitu akurasi tinggi, fleksibel dan pengoperasiannya
lebih mudah.

a. First Order. Bentuk diskritisai turunan pertama dengan pendekatan skema kompak beda
hingga orde-4 dan orde-6 dirumuskan oleh Lele(Wilson dan Demuren, 1998). Bentuk persamaannya
adalah seperti berikut :

- : : a b
0@1'—1 + CDi + Og)m = E ((Di+l _CDi—l) +E (CDi+2 _CDi—Z) (6)

where:
AX = L,/Ny
N, = jumlah grid point
D, = turunan pertama dari variabel @, terhadap x

a, a, b = koefisien skema kompak
Turunan terhadap y dan z dapat dilakukan dengan cara yang sama. Untuk skema orde-empat maka ;
a=1/4, a=3/2 dan b=0. Untuk skema orde-6 maka; a=1/4, a=14/9, dan b=1/9.

Perbandingan skema ekplisit beda-hingga dan skema kompak beda hingga dari turunan pertama
ditunjukkan dalam tabel 2.2 Di sini terlihat bahwa skema kompak beda hingga memiliki grid stensil
yang lebih sedikit, koefisien galat pemenggalan berkurang menjadi % untuk orde-4 dan 1/9 untuk
orde-6 dari koefisien beda tengah ekplisit untuk orde yang sama.

Table 2.2 Comparison between finite difference scheme and first order compact scheme
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Skema Kesalahan pemenggalan Jumlah stensil
Beda tengah orde-4 (-4/51)( Ax)* @© 5
Kompak orde-4 (-1/5!)( Ax)* ®© 3
Beda tengah orde-6 (-36/71)(Ax)* @7 7
Kompak orde-6 47 (Ax)* d7) 5
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Menurut Hu dkk(1996) resolusi dari diskritisasi turunan pertama dapat dianalisa dengan

mentransformasi persamaan konveksi 1-D sebagai berikut:

) )
oo + ca— =0 (7)
ot ox
ou 1 w
— | =—2ad, 8
(axjj Ax[;N 1 J+l ( )
Dalam mode Fourier ® = ®(¢)e™ maka :
82 = 82 e 9)
o ot
q)j+l _ ("Iseik(xm)c) (10)
Sehingga persamaan konveksi 1-D menjadi :
~ Voo
@eﬂa +L alq)ezk(x+1Ax) -0 (11)
ot I=—N
~ v
®.,c > a,de’ =0 (12)
ot Ax /7=
@ ik d=0 (13)
ot
where:
* - i il i)
k'=—> ae"™ (14)
Ax =y

* .
k was numerical wave number.

Numerical wave number untuk skema kompak beda hingga dari turunan pertama dalah :

asin(kAx) +zsin(2kAx)

Ax 20 cos(kAx) +1

Simpangan dari kurva real(") terhadap k& menunjukkan galat dispersi dan simpangan dari kurva

imag(k’) menunjukkan galat disipasi.
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Gambar 2.1 Galat dispersi (a) dan galat disipasi (b) untuk pendekatan numerik

dari turunan pertama

Syarat batas diselesaikan dengan skema kompak orde-3 dengan persamaan sebagai berikut :

. . 13
®, +a, D, = szabsiq)i
—

(16)

a, =2 dan a,, =-5/2, a,, =2, a,, =1/2 adalah koefisien orde-3 dari syarat batas pada i=1.

Persamaan yang sama juga digunakan untuk syarat batas pada i=N.
Untuk skema orde-6, syarat batas diselesaikan dengan skema ekplisit beda-hingga orde-5
untuk titik i=1 dan i=N. Persamaan syarat batas adalah sebagai berikut :

. 1 &
O, =—>»a, D
1 Ax; bsi ~ i

dimana:
aps;=-296/105
Aps2=415/48
aps3=-125/8
aps4=985/48
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(17)

apss=-215/12
aps6=791/80
aps7=-25/8
Apss=245/336
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Untuk syarat batas pada i=2 dan i=N-1 juga digunakan skema ekplisit orde-lima sebagai berikut :

. 1
O, = - ;amd), (18)
dimana:
Ay =-3/16 aups=115/144
Anpy=-211/180 aps=-1/3
anp;=109/48 any7=23/40
Anpe=-35/24 Anps=-1/72

b. Turunan kedua. Persamaan skema kompak beda hingga untuk turunan kedua adalah sebagai
berikut :

; . ; a b
oD, +D, +aD,,, = D, 20 +D )+ D,,-20,+D,,) (19
1 1 (Ax)z ( 1 1) 4 AX)Z ( 2 2)
dimana :
0} = turunan kedua dari variabel @ terhadap x

a,a,b = koefisien skema kompak beda hingga turunan kedua

Untuk orde-empat, a=1/10, a = 6/5, =0 dan untuk orde-enam, a.=2/11, a =12/11, »b=3/11
Perbandingan antara skema beda-hingga ekplisit dan skema kompak beda hingga ditunjukkan

dalam tabel 2.3. Di sini terlihat bahwa skema kompak beda hingga memiliki stensil lebih sedikit,

koefisien galat pemenggalan berkurang menjadi %2 untuk orde-4 dan ¥ untuk orde-6 dari koefisien

beda tengah ekplisit untuk orde yang sama.

Tabel 2.3 Perbandingan skema beda hingga dan skema kompak turunan kedua

Skema Kesalahan pemenggalan Jumlah stensil

Beda tengah orde-4

(-8/61)(Ax)*D® 5

Kompak orde-4

(-3.6/61)(Ax)*D®©

Beda tengah orde-6

(-72/81)(Ax)°D®

Kompak orde-6

(-16.7/81)(Ax)°D®

3
7
5

Analisa resolusi untuk turunan kedua dari pendekatan numerik skema kompak beda hingga
dilakukan dengan cara yang sama dengan analisa turunan pertama. Numerical wave number untuk

skema kompak beda hingga dari turunan kedua adalah :

1

afl - cos(kAx) |+ g [1- cos(2kAx)]

(K=

(Ax)?

1- 2 cos(kAx)

(20)

Deviasi dari (k'Ax)* terhadap (kAx)* ditampilkan dalam bentuk grafik gambar 2.2 untuk

beberapa skema beda-hingga.
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(Krdlx)**2
(6)]

3.5

kdx

Gambar 2.2 Galat disipasi untuk pendekatan numerik dari turunan kedua

Galat disipasi dari berbagai skema beda-hingga tampak pada gambar 2.2 dapat diketahui bahwa
nilai numerical wavenumber untuk skema kompak lebih mendekati nilai exact wavenumber.
Kondisi batas pada i=1 dan i=N diselesaikan dengan skema kompak orde-3 sebagai berikut :

" " 1 4
D +a,d, =W2ab‘“®i (21)
i=1

dimana, o, =11 dan ap,=13, ap=-27, a,;=15 dan a,,, =-1 adalah koefisien skema kompak orde-3.
4. Metode Kompresibilitas Tiruan (Artificial Compressibility)

Konsep metode kompresibilitas tiruan adalah menambahkan turunan terhadap waktu pada
persamaan kontinyuitas. Bentuk modifikasi persamaan adalah :

24 +&VE =0 (22)
ot
dimana ¢ adalah konstanta positip. Persamaan ini tidak mempunyai arti fisik jika kondisi tunak belum

tercapai.

THEORETICAL TREATMENT

1. Diskritisasi persamaan momentum
Diskritisasi persamaan momentum dengan skema Runge-Kutta adalah seperti berikut :
Kecepatan arah x (u)

193



Eko Prasetya Budiana and Sutrisno

M M M+1 M
u, =u, +b AtH

M M M M M
H. =—u ux —v uy
) LJj LJ LJ LJj
Kecepatan arah y (v)

M+1

1,]

M M+1 M
v, =V, +b +AtHl.J

M

_pxi,j +

Pr

a

Pr M
o (v, +vpy, J+PrG, +d"H.! g5

(uxx +uyy )

(23)

+a Hl/ (24)

(25)

Diskritasi turunan ruang dengan skema kompak orde-4 adalah seperti berikut :

Diskritisasi turunan pertama

1ux +ux, +1ux —i(u.M u )

4 47T gpy T 7
1 y o+ uy + 1ux i(uM —u" )

4 7 4 T g Ay HERL S (28)
1vx St +1vx —i(vM.—v.M)

4 47 T gAY T =
1 yM vy +— L v i(VM —y" )

4 ij-1 4 i, j+1 4Ay ij+l ij-1 (30)
1 1 3 ( u M

prl L +px +— 4 leﬂ] _E(ph—l,j _pl—lJ) (31)
T L L oy

4 i,j-1 A i,j+1 4Ay i,j+ i,j-1 (32)
Diskritisasi turunan kedua

1 1 6 M M M

1—Oux)g iy +uxx +1Oux)g+lj S ( U, — 2, +ul._1‘j) 33)
iuyy yy L yy 0 (uM ~2u" +u” )
10" x 10 i+ 5( A )2 ij+1 ij g (34)

1

1
vaﬁj +VX% +1—OVX 1+, :@
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6 (u M M
(i+lj _2Vi,j i—lj) (35)
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1 v 1 6 ( Mg M )
0 VY.V, + 0 VY0 = ST Vi TV TV 0 36)
2. Diskritisasi persamaan energi.
M M M+ M
Hl.’j = Qi’j +b AtHl.’j (37)
M 1 M M M, M
H :_u &Ctj i,j i,j RaO.S (&Cxi,j +@/yi,j )+a Hi,j (38)

Diskritasi turunan ruang dengan skema kompak orde-4 adalah seperti berikut :
Diskritisasi turunan pertama

1 3 M M
Zexi Tt ex + 4 9x1+1 g m(gﬁl,j - 91‘—1,]‘) (39)
1 M M 1 M 3 M M
Zeyi,j—l oy, T ngi,ﬁl = E(ei,ﬁl B (9111—1) (40)
Diskritisasi turunan kedua
1 1 6
o+ o +E6bcxl+ll _m(eﬂl 20" +0".) un
M 6 M M M
—@/y, Oy + 10 @’y,-,,-+1 = m(@,m —20,, + 91-,,--1) 42)
3. Diskritisasi metode kompresibilitas tiruan.
M +1 M M +1 M
P :pi,j+b AtHi,j (43)

4. Diskritisasi syarat batas
Dalam penelitian ini kasus yang dibahas adalah konveksi alami dalam

Scheme

kotak 2-D dengan dinding bawah dan atas merupakan dinding adiabatis, dinding kiri mendapat
pemanasan dan dinding kanan mendapat pendinginan. Pada seluruh dinding kecepatan bernialai nol

sedangkan syarat batas tekanan dan temperatur adalah seperti berikut :
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6=05|—=0 £ _0|-6=05

Gambar 3.1 Domain dan syarat batas
a. Syarat batas kecepatan
Turunan pertama.
Untuk i=1 dan i=nx

uxii 121 ( 3u +16u 36ufj + 48u;4j — 25ufj) (45)
ol =, 16", 4360, 48, 250" ) g
™I 19Ax nx—4,j nx-3, nx-2,j nx-1,j nx, j
vxfj = 121 (— Bij +16vfj —36\/;‘2 + 48\/22 - 25\/5) 47)
Ax
! IZM(% 160", 4360, —a8t, -25" | g
Untuk j=1 dan j=ny
w = (3u" +16u" — 361" + 48" ~25u" ) 4
12Ay
M 1 M M
uyi,ny :@(SMi,ny—4 _16 i,ny—3 +36u ny—2 - 8 i,ny-1 _25ul ny) (50)
M 1 M M M
w5 y( 30" +16v" —36v" +48v" — 250" ) g
M 1 M
W = @(3 oyt —16v "'36",-,@4 —48vl.’ L, — 25V, ny) (52)

Turunan kedua.
Untuk i=1 dan i=nx
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M

uxxfj +11uxxf . 5 (13u 27ufj +15ui4j —u 4'].) (53)

(

uxx. +1Juxx =

nx,j 1,/ (

vxxfj +llvxxf = (Ai >

vxx +1lvxxnx1j :( )2

Untuk j=1 dan j=ny

ap

M M )
nx—2,j - unx—3,j (54)

3 —2m, 15

f

(3" — 27 +15" —" ) o)

b3 —2m’, 415, ") e

2,j - nx—3,j

1
uyyzl +11uyy , = ( (13u — 27u +15u M) (57)
M
uy—yz Yy +11uy.yz ny-1 (Ay (13/l1 ny - 27“ ny-1 15/{11,‘/;/ 2 ul,ny—3) (58)
1
vyyﬁ +11vyyl.vM2 = ( (l3v 27\21.’M2 +15vié — vﬁ) (59)
M
Vy-y:iy +11vy.)}i1iy—l Ay) (13vz ny - 27Vl ny-1 +15v1 ny—2 vz ny—3) (60)
b. Syarat batas tekanan
Untuk /=1 dan i=nx
M
px,; = 0 (61)
px,,, =0 (62)
Untuk j=1 dan j=ny
M
Py, =0 (63)
uy,, =0 (64)

c. Syarat batas temperatur
Turunan pertama
Untuk i=1 dan i=nx

M 1 M M M M
= 349 +1660, —360, +4860, — 250,
1, 12 Ax ( 4,j 3,J 2,j L ) (65)
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1
@CVZZJ 12Ax (39}1)( 4,j 69::73,j + 360n 4%nx -1,/ o 259:::]) (66)
Untuk j=1 dan j=ny
¢9yﬁi =0 (67)
@/Zy =0 (68)

Turunan kedua
Untuk ;=1 dan i=nx

o +1160" = ( 276" +150 - 4" )

' 11, = (130" 270"

()

150",,-0",) o

nx—1, j nx—2,j nx—3,j

Untuk j=1 dan j=ny

1
@/yll +11@/y,2 - (

(139" — 270" +150" ~ 6" )

M

(%" -270" ,+150

M
@/.yl ny + 1@}.);1 ny-1 i,ny—2 _ei,ny—3) (72)

()

Bilangan Nusselt pada dinding (x=0) dan tengah (x=0.5) dihitung dengan persamaan (Le
Quere, 1990):

1

Nu = I(Rao'suﬁ - %jﬂ'y (73)
0 ox

Sedangkan Bilangan Nusselt lokal pada dinding dihitung dengan persamaan:

Nu = 89 (74)

o

Stream Function dihitung dengan persamaan :

o’p 0*p (v ou

ox oy ox Oy

dengan syarat batas di dinding adalah ¢=0.
Vortisitas dihitung dengan persamaan

— a_v_a_u 76
ox Oy (76)

Residu dihitung dengan persamaan :
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ou Ov
2o oy
Residy = ——_ 1 77
Don
n=jumlah grid

RESULT AND DISCUSSION

Perhitungan dilakukan dengan PC Pentium Il kecepatan 550 MHz dengan RAM 64 MB.
Program ditulis dalam Bahasa Fortran dengan perangkat lunak Lahey Fortran. Untuk visualisasi hasil
menggunakan perangkat lunak Matlab 6. Ukuran grid adalah 101x101 untuk Ra=10° 151x151 untuk
Ra=10" dan 201x201 untuk Ra=10° dan Ra=5x10® dengan grid seragam.

Gambar 4.4 menunjukkan peningkatan Ra menyebabkan kecepatan konvergensi berkurang.
Hal ini disebabkan peningkatan Ra membuat suku difusi berkurang pengaruhnya terhadap
perhitungan. Suku difusi mempunyai sifat sebagai peredam, sehingga perhitungan stabil. Dengan
melemahnya suku difusi maka suku adveksi menguat dan menggantikan dominasi suku difusi.
Penguatan suku adveksi membuat sistem persamaan atur cenderung bersifat hiperbolik. Residu
berosilasi tajam dan sulit untuk diredam. Untuk nilai Ra lebih dari 5x10® perhitungan sangat sulit
untuk mencapai konvergensi.
Residu dihitung dihitung dengan persamaan :

Zax oy
Don

n = jumlah grid.
Untuk mengetahui akurasi perhitungan Bilangan Nusselt (Nu) pada penelitian ini, hasil
perhitungan untuk berbagai nilai Bilangan Rayleigh dibandingkan dengan korelasi dari Catton

(Incropera & DeWitt, 1990) yaitu :

ou Ov
7_'_7

Residu = (73)

_ Pr 0.29
Nu=0.18 — Ra (74)
0.2+Pr
Pada penelitian ini Nu rata-rata untuk x=0 dan x=0.5 dihitung dengan persamaan :
1
00
Nu = I Ra®u0 - =—= dy (75)
5 ox
Korelasi antara Nu terhadap Ra ditunjukkan dengan persamaan :
Nu=0.1562Ra"28% (76)

Gambar 4.1 menunjukkan bahwa peningkatan nilai Ra menyebabkan nilai Nu rata-rata
meningkat. Perbandingan dengan korelasi Catton menunjukkan hasil yang cukup dekat.

Bilangan Nusselt adalah parameter yang menunjukkan perbandingan antara koefisen
perpindahan panas konveksi dari koefisien perpindahan panas konduksi.Untuk nilai Ra yang sangat
rendah (Ra<1000) aliran konveksi sangat lemah sehingga perpindahan panas murni disebabkan oleh
konduksi. Hal ini dapat dilihat pada gambar 4.1 pada Ra rendah nilai Nu rata-rata adalah 1.

Bilangan Nusselt lokal dihitung dengan persamaan :
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06

ox
Pengaruh Ra terhadap Nu lokal dapat dilihat pada gambar 4.5. Menurut gambar 4.5 dapat diketahui
bahwa peningkatan nilai Ra juga menyebabkan nilai Nu lokal meningkat. Nu lokal tertinggi terletak
pada bagian bawah (y=0) untuk dinding x=0, semakin ke atas Nu lokal berkurang. Hal ini
menunjukkan bahwa semakin ke atas gradien temperatur berkurang. Sedangkan pada dinding x=1, Nu
lokal tertinggi terjadi pada bagian atas (y=1) dan semakin ke bawah nilainya berkurang.

Nu = (77)

40

o | Korelasi dari Catton

Korelasi penelitian
30 . S /a
a  Data Numerik :

25

20

Nu

15

10

3

0 T T T T T T
1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Ra

Gam
bar 4.1 Perbandingan nilai Nu pada x=0 dengan korelasi dari Catton

Tinjauan secara fisis akan diberikan pada bagian di bawah ini. Gambar 4.2 dan 4.3
menampilkan vektor kecepatan untuk Ra 10° dan 10’. Di sini terlihat bahwa kecepatan fluida pada
dinding kiri dan kanan relatif cepat dari pada bagian tengah. Pada dinding kiri fluida mendapat
pemanasan sehingga densitas fluida mengecil . Penyusutan densitas pada dinding Kiri menyebabkan
terjadinya gaya apung sehingga fluida bergerak ke atas. Aliran fluida setelah mencapai dinding atas
bergerak turun dan selanjutnya membelok ke kanan dan mengalami pendinginan. Gerakan fluida turun
setelah mencapai dinding atas disebabkan oleh pengaruh inersia. Hal ini terjadi karena nilai Bilangan
Prandtl untuk udara adalah Pr<1 sehingga keseimbangan persamaan aliran dipengaruhi oleh inersia.
Untuk nilai Pr>1 maka pengaruh inersia akan semakin berkurang sehingga keseimbangan persamaan
aliran dipengaruhi oleh friction dan buoyancy. Setelah mencapai dinding kanan fluida membelok ke
bawah, karena dinding kanan temperaturnya lebih rendah fluida mengalami pendinginan sehingga
densitasnya meningkat, dengan demikian kecepatan aliran bertambah karena pengaruh gaya gravitasi.
Setelah mencapai dinding bawah aliran fluida bergerak ke atas karena pengaruh inersia kemudian
berbelok ke kiri dan mengalami pemanasan pada dinding kiri.

Pembelokan aliran fluida di dekat dinding x=0 bagian atas menyebabkan gradien temperatur
berkurang karena aliran fluida juga mengangkut panas dari dinding x=0. Hal ini juga bisa diamati dari
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distribusi Bilangan Nusselt lokal di dinding x=0, Nu lokal semakin ke atas semakin rendah. Sedangkan
peristiwa yang terjadi didekat dinding x=1 adalah kebalikan dari peristiwa aliran di dekat dinding x=0.

Pengaruh Bilangan Rayleigh terhadap vektor kecepatan adalah peningkatan Ra menyebabkan
lapis batas hidrodinamis di dinding menipis. Ini berarti gradien kecepatan di dinding meningkat dan
gaya gesek juga meningkat. Dari gambar 4.6 terlihat bahwa vortisitas di dekat dinding kiri dan kanan
cukup besar. Hal ini karena gaya gesek di dinding kiri dan kanan relatif lebih besar. Gambar 4.8
menunjukkan peningkatan Ra juga membuat lapis batas thermal di dinding menipis sehingga gradien
temperatur di dinding meningkat. Distribusi temperatur yang relatif panas di bagian kiri atas semakin
condong ke kanan dan distribusi temperatur yang relatif dingin di bagian Kiri bawah semakin condong
ke kiri, hal ini karena kecepatan fluida yang membawa panas juga meningkat seiring peningkatan Ra.

Dari gambar 4.9 terlihat bahwa garis-garis isobar kelihatan mulus dengan demikian pemakaian
skema kompak orde-4 seperti yang dijelaskan di atas bisa menghilangkan osilasi numerik pada
tekanan.

Gambar 4.10 sampai 4.11 menunjukkan kurva isothermal dan stream function untuk berbagai
domain berbentuk persegi panjang dan non persegipanjang (non rectangular). Perhitungan dilakukan
pada Ra=10" dengan Ax=1/200 dan Ay=1/200. Di sini terlihat aliran bersirkulasi melalui
sepanjang dinding batas dari domain.

Gambar 4.12 menunjukkan visualisasi hasil untuk kasus dengan variabel berdimensi. Diskripsi
dari kasus ini adalah dinding kiri dijaga pada 20°C dan dinding kanan 0°C, kotak berisi udara kering
dengan sifat-sifat sebagai berikut(Bejan, 1984) :

Tekanan P=1atm
Temperatur T=10°C
Densitas p =0.001274 g/cm?

v =0.141 cm?/s
o = 0.196 cm?/s

Viskositas kinematik
Difusivitas thermal
Koefisien ekspansi thermal B =0.0035214 K™

Bilangan Rayleigh Ra = 2x10’

Kotak dengan dimensi 20x20 cm dan perhitungan dilakukan dengan jumlah grid 151x151.

Hasil perhitungan dan perbandingan dengan hasil peneliti lainnya disajikan dalam tabel 4.1, 4.2
dan 4.3. Kolom terakhir tabel menunjukkan perbandingan antara hasil penelitian ini dengan hasil
penelitian dari Le Quere.

Tabel.4.1Hasil Perhitungan dan Perbandingan untuk Ra=10°

Sekarang Le Quere | De Vahl Davies | Beda (%)

Pmiddle 0.0164552 | 0.016384 | 0.01632 0.43
Prmax 0.0169117 | 0.016811 | 0.01675 0.60
X 0.150000 | 0.1500 0.151 0.00

Y 0.550000 | 0.5470 0.547 0.55
Umax(1i2y) | 0.0649050 | 0.064834 | 0.06463 0.11
Y 0.850000 | 0.850 0.850 0.00
Vmaxx12) | 0.220236 | 0.2206 0.21936 0.17
X 0.040 0.038 0.0379 5.26
NUyan 8.73394 8.8252 8.817 1.03
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NUmidgale | 8.82299 8.8244 8.779 0.02
NUmax 17.1575 17.5343 17.925 2.15
Y 0.030 0.039 0.0378 23.08
NUmin 0.98427 0.97948 0.989 0.49
Y 1.0 1.0 1.0 0.00

Tabel 4.2 Hasil Perhitungan dan Perbandingan untuk Ra=10’
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sekarang Le Quere Lauriat & | Kelson | Beda (%)
Altimir
Pmiddle 0.00936819 | 0.00928496 | - 0.9275 0.90
Prmax 0.00964076 | 0.00953872 | - 0.9528 1.07
X 0.0866667 | 0.086 - 0.086 0.78
Y 0.553333 0.556 - 0.556 0.48
Umax(iizy) | 0.0473129 | 0.046986 0.0468 0.04687 0.70
Y 0.88 0.879 0.874 0.880 0.11
Vmax(x1/2) | 0.221048 0.21118 0.2287 0.2209 4.67
X 0.02 0.021 0.021 0.0213 4.76
NUwai 16.2068 16.523 16.56 16.5 1.91
NUmigge | 16.5638 16.523 16.46 16.5 0.25
NUpmax 40.3192 39.3947 40.15 - 2.35
Y 0.00667 0.018 0.016 - 62.94
NUpmin 1.37516 1.36635 1.376 - 0.64
Y 1.0 1.0 1.0 - 0.00
Tabel 4.3 Hasil Perhitungan dan Perbandingan untuk Ra=10°
Sekarang Le Quere | Kelson Beda (%)

Prmiddle 0.00541453 | 0.005232 | 0.005203 3.49

Prmax 0.00552848 | 0.005385 | 0.005357 2.66

X 0.05 0.048 0.0484 4.17

Y 0.550 0.553 0.551 0.54

Umaxizy) | 0.033394 0.03219 0.03116 3.74

Y 0.9300 0.928 0.926 0.22

Vmaxx1/2) | 0.2196 0.2222 0.2209 1.17

X 0.0100 0.012 0.012 16.67

NUwar 29.811 30.225 30.0 1.37

NUmigge | 30.9465 30.225 30.2 2.39

Stream Function dihitung dengan persamaan :
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0%p 07 ov  Ou
ox oy ox 0Jy

dengan syarat batas di dinding adalah ¢=0.

Vortisitas dihitung dengan persamaan

o= 79
ox Oy (79)

SUMMARY AND CONCLUSIONS
Kesimpulan yang dapat ditarik dari penelitian ini adalah :

1. Hasil peneletian memiliki kedekatan yang baik dengan hasil penelitian dari
Le Quere. Perbedaan hasil penelitian dengan penelitian dari Le Quere kurang dari 5%.
2. Hasil perhitungan memiliki konvergensi yang baik sampai pada Bilangan
Rayleigh 5x10°.
3. Dengan skema kompak orde-4 osilasi numerik pada tekanan dapat dihilangkan.
4. Hubungan antara Bilangan Nusselt (Nu) terhadap Bilangan Rayleigh (Ra) ditunjukkan dengan
korelasi Nu=0.1562Ra’**** Korelasi tersebut berlaku untuk 10°<Ra<10°.
Conclusions:

Skema kompak orde-tinggi selain memiliki akurasi yang baik mempunyai bentuk yang
sederhana dan mudah diaplikasikan. Bagi para pembaca yang berminat penelitian ini masih terbuka
kemungkinan untuk penyelesaian kasus 3-D atau penyelesaian kasus 2-D dengan menggunaan grid
yang tidak seragam.
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Gambar 4.8 Isothermal untuk berbagai nilai Ra=10°%10°10°107,10° dan 5x108.

206



Numerical Simulation Of Natural Convection Heat Transfer On Two-Dimensional Box Using High-Order Compact
Scheme

= ——————
—— 0.034634
08 0023442
0.01225
0eF — ———— 0010576
a7 ——{.01013:
0.02132 e
08
05
04
03 ~0.01 57 34—
=== 0.0045385
02 0.0066538
0.017848
0.1
0.029038
———0.04023———

01 02 03 04 05 08

¢) Ra=10°
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Gambar 4.9 Isobar untuk berbagai nilai Ra=10°10°10°,10’,10% dan 5x10°.
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