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Abstract 
This paper addresses the global buckling and wrinkling behaviors of sandwich plates with aluminum 
foam core and aluminum faces. The finite element eigenvalue analysis is conducted to predict buckling 
loads and buckling modes and to verify the analytical calculation. Good agreements between the 
numerical and analytical results are achieved. The results show that the aluminum foam sandwiches offer 
2-10 times higher buckling load than common honeycomb sandwiches, while only 1-2 times heavier. 
Global buckling load decreases with aspect ratio in a similar way to homogenous plates, but increases 
with core thickness until wrinkling occurs.   
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Introduction 

In aeronautical, automobile and marine applications, lightweight structures are highly demanded since 
they provide weight reduction for higher payload. Sandwich structures are well-known for relatively 
high effective stiffness at very low weight. However, commonly used core materials, such as 
honeycomb and polymer foams, do not give sufficient rigidity, toughness and plasticity to many 
applications. Metal foams, especially aluminum foams, have been emerging as a novel class of 
materials with many excellent characteristics, such as high stiffness-to-density ratio, high energy-
absorption capability, and good stability at high temperature [1]. 
   Under compressive loads, sandwich structures may be damaged due to various causes in which 
buckling is the most serious because it usually occurs at low load and in operating condition. A 
sandwich plate may buckle in one of the three basic modes: global buckling, symmetrical wrinkling, 
and anti-symmetrical wrinkling. In global buckling mode, faces and core buckle together into a single 
buckle whose half wavelength is equal to an in-plane dimension. In wrinkling modes, faces deform 
locally with a large number of short wavelength buckles. When core does not exhibit any transverse 
deformation, wrinkling is anti-symmetrical; when it does equally toward the faces, wrinkling is 
symmetrical. Depending on complicated interactions between geometry parameters and materials 
properties, any of the basic modes may develop and usually be difficult to characterize. In practice, 
other failures may occur in conjunction with buckling, such as core crushing, face and core plastic 
deformation, and delamination. Since the 1940’s, many researches have been conducted to study the 
buckling behaviors of sandwich plates [see, e.g. 2-8], but most of the works concern sandwiches with 
weak core materials. 
   In this work, the buckling behaviors of sandwich plates with aluminum foam core are investigated in 
comparison with honeycomb sandwiches. Finite element method is mainly used for analysis, while 
analytical calculation is done as a benchmark. Sensitivity of buckling load and mode to aspect ratio 
and thickness is also considered. 

Analytical calculation 

The analytical methods introduced in this section are used for a fast prediction of critical load and 
mode. They are selected from a large number of theoretical works available in literature. 
   In an early analytical work to characterize global buckling, Seide and Stowell [2] developed a 
formula for simply-supported sandwich plates and columns, as given in Eq.1.  
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where Pcr,G is the critical global buckling load; k is the critical global buckling load factor; D is the 
flexural rigidity per unit width; Gc is the shear modulus of the core; a and b are the length and width of 
sandwich plate, respectively; tc is the thickness of core (see Fig.1). Because of its simplicity, the 
formula is still widely used in sandwich design and construction. The model is analogous to that of 
homogenous plates and involves the assumptions of anti-plane core (i.e. core deformation is dominant 
in transverse direction, still core shearing is considered) and plane-strain (i.e. either plate or column is 
treated to be infinitely wide). In an independent work, Hoff [3] also used this model except that local 
rigidity of the faces was taken into account. Using an energy approach to deal with various boundary 
conditions, he ended up with the following formula for the simply-supported plates and columns. 
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where )/( bam=β  with m is the number of half-waves in loading direction (m = 1 for global 

buckling);  with D defined as in Eq.1;  with D2
0 )/( bDP π= 2)/( bDP ff π= f is the local rigidity of 

each face. 
   For wrinkling modes, Hoff and Mautner [4] modeled a sandwich plate as two elastic beams that 
represent faces deforming on an elastic foundation that represents core, and solve the problem for 
symmetrical wrinkling and anti-symmetrical wrinkling separately. The critical loads are calculated by 
Eq.3a-b for sandwiches with thick core and Eq.3c-d for those with thin core. 

3
,, 82.1 ccffthickcoreSWcr GEEtP =                                                           (3a) 

ccccffthickcoreAWcr tGGEEtP 66.002.1 3
., +=                                        (3b) 

cccfcffthincoreSWcr tGttEEtP 332.0/634.1,, +=                                (3c) 

cccfcffthincoreAWcr tGttEEtP 774.0/08.1,, +=                                 (3d) 

where Ef and Ec are the Young’s modulus of face and core material, respectively; Gc is the shear 
modulus of core material; tf and tc are the thicknesses of face and core, respectively. The equations are 
very simple yet proved applicable for a wide range of sandwich plates and columns. However, the 
constants usually have to be modified semi-empirically for a particular application.  
   In unified models, global buckling and wrinkling are treated together, since global buckling is 
considered as a special mode of anti-symmetrical wrinkling. Displacement field is assumed, and 
critical load is calculated by establishing equilibrium equation [5] or minimizing first derivative of 
deformation energy [6]. Mathematically, finding critical load is equivalent to solving an eigenvalue 
problem that describes stability of the structure. Léotoing et al. [7] provided a close-form solution for 
the problem which is given as following. 
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where am /πω = with m is the number of half-waves in loading direction. 
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Finite element modeling 

In this work, a large number of sandwich plates with aluminum foam core and aluminum faces are 
analyzed with finite element method using the Nastran commercial code. For comparison, honeycomb 
sandwiches are also analyzed. 

Geometry and material properties 
To observe a particular buckling mode, the geometry must be chosen accordingly. This can be done by 
making use of the analytical analysis. The geometry parameters of two typical plates are given in Fig.1 
and Table.1. These parameters are also used for the honeycomb sandwiches. For the sensitivity 
studies, the width and the face thickness are fixed, whereas either the length or the core thickness is 
varied. 
   In the present models, materials of the core and faces are assumed to be homogenous, isotropic and 
elastic. A common aeronautical aluminum alloy with fixed values of properties is used for the faces, 
meanwhile Alporas is chosen as the core material. It is noted that properties of aluminum foams 
change with relative density, and relative density depends on overall dimensions and cell size [1]. For 
the specimens to be analyzed, variation in relative density versus overall dimensions is not significant, 
thus material properties of Alporas are assumed to stay constant. The material properties are given in 
Table.1. It is noteworthy that the total weights of the sandwich plates with Alporas core are only 1-2 
times as high as those of sandwiches with honeycomb core, although the density of Alporas itself is 3-
7 times higher than that of honeycomb. This is because the weights are mostly contributed by the faces 
made of aluminum alloy. 
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Figure 1: Illustration of geometry, boundary condition and loading. Length and width are denoted as a and b, 
respectively. Thicknesses of faces and core are denoted tf and tc, respectively. 
 

Table 1: Geometry parameters and materials properties of the typical sandwich plates. The values given in 
bracket correspond to wrinkling specimens.  

Material properties Geometry parameters 
 Aluminum [9] Alporas [10] Honeycomb [8] 

a (mm) 228  
(228) 

Young’s modulus,  
Ex, Ey, Ez (MPa) 

70000 
 

1140 
(1140) 

0.01, 0.01, 298 
(0.001, 0.001, 109) a

b (mm) 228  
(228) 

Shear modulus,  
Gxy, Gyz, Gzx (MPa) - - 0.01, 35.2, 60 

(0.5, 15.5, 26.6) a

tf (mm) 0.65  
(0.65) 

Poison’s ratio, ν 0.33 
 

0.33 
(0.33) 

0.25 
(0.25) a

tc (mm) 5  
(25) 

Density, ρ  (g/cm3) 2.8 
 

0.22 

(0.22) 
0.064 

(0.032) a

  Weight, (g) 189.2 b

 
57.2 

(285.9) 
16.6 

(41.2) 
  Total weight, (g) - 246.4 

(475.1) 
205.8 

(230.4) 
a  Properties selected to avoid core crushing [8] 
b Weight of both face sheets 
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Elements and meshing 
Hexagonal (8-node) solid elements are used to model the core and faces so that all possible 
deformations can be captured. Since face-core bonding is assumed to be perfect and adhesive layers 
are ignored, face and core are connected by merging identically positioned nodes that belong to both 
face and core elements. In a common experimental set-up for simply-supported plates, every edge is 
hold by a series of short rollers in order that any local part of the edge simply rotates about its axis (the 
rotation may differ from part to part, i.e. from roller to roller). In this work, the roller is successfully 
modeled as rigid line element that connects dependent nodes to an independent node. Selected 
displacements and rotations of the dependent nodes are forced to be consistent with those of the 
independent node following pre-defined mathematical constraints. 
   To achieve correct results, dense and even meshing is applied. A number of 40-100 elements are 
meshed in x- and y-direction; in z-direction, the faces are meshed into 1-2 elements and the core is 
meshed into 2-8 elements. The total number of elements is between 7000 and 120000, where the 
specific number is determined by convergence study. In element meshing, care should be taken to 
keep solid elements from ill-conditions, such as too high aspect ratio.  

Boundary condition and loading 
For the sandwich plates analyzed in this work, their four edges are simply-supported, i.e. transverse 
displacements (in z-direction) are restrained at the edges. The constraints are only imposed on the 
independent nodes, but the dependent nodes are also constrained properly due to the rigid line 
elements. The restraint “2” shown in Fig.1 is to keep the structure from rigid-body translation in y-
direction that causes stiffness matrix over-determined. 
   Either force-controlled or displacement-controlled loading is imposed. In the former scheme, unit 
nodal forces are applied to the faces, since sandwich faces carry most of external loads. It is noted that 
the nodes at corners are loaded only by a half of unit force so that stress distribution around the loaded 
edge is uniform. In the latter scheme, unit nodal displacements are applied to the independent nodes of 
the rigid elements. Since buckling load has a value of force, displacement load is transformed into 
force via geometry and materials properties. However, experience showed that there should be no 
significant difference in results of the two schemes.      

Buckling load computation 
To calculate critical buckling load, the linear eigenvalue analysis is used, where the critical load is 
computed as compressive load corresponding to the lowest solution of an eigenvalue problem and 
buckling mode shape is calculated from the corresponding eigenvector. Although the critical load is 
exact, displacement field (thus stress field) of a buckled plate obtained from the eigenvalue analysis 
does not have exact magnitude but is scaled by an arbitrary number.  

Results and discussion 

Comparison with honeycomb sandwiches 
The results of global buckling and wrinkling loads computed for the typical sandwich plates with 
Alporas and honeycomb core are given in Table.2.  

Table 2: Buckling load calculated for sandwich plates with Alporas core and honeycomb core 
 Global buckling load 

 (N/mm) 
Wrinkling load 

 (N/mm) 
Alporas sandwich   
Present FEM result 609 6111 
Analytical result calculated from Eq.1 541 7999 
Analytical result calculated from Eq.2 544 7996 
Analytical result calculated from Eq.4 528 6118 
Honeycomb sandwich   
Present FEM result 272 557 
Analytical result calculated from Eq.3 - 697 
Analytical result given in [6] 298 497 
Experimental result given in [8] 234 361 
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   It can be seen that the global buckling load of the Alporas sandwich is 2 times higher than that of the 
honeycomb sandwich, while their total weight are almost the same (see Table.1). It is because Alporas 
is isotropic and has a much higher axial stiffness of than does the orthotropic honeycomb. The 
advantage of Alporas over honeycomb is more significant in its wrinkling load, which is about 10 
times higher than that of honeycomb, while the Alporas sandwich is only twice as heavy as the 
honeycomb sandwich. The superiority in wrinkling resistance of Alporas can be explained by its 
higher shear stiffness that keep sandwich faces cooperating better. Both of the advantages are not 
surprising because aluminum foams are metal-based and isotropic materials while honeycombs are 
usually polymer-based and always orthotropic. 
   In comparison with the analytical results, the present results show a good agreement with the 
maximum discrepancy of 30%. The main reason of discrepancy is that all of the analytical methods are 
based on one- or two-dimensional models with assumptions that overestimate or underestimate many 
important parameters and factors. While the global buckling load calculated for the honeycomb 
sandwich agrees very well with the experiment of Pearce and Webber [8], the wrinkling load differs 
by 35% from the experimental value. As reported by the referred author, the experiment failed to 
capture wrinkling behavior, since core crushing had occurred first; thus the value provided is indeed 
not corresponding to a wrinkling load. 

Effect of aspect ratio 
In this sensitivity analysis, the global buckling specimen is chosen rather than the wrinkling specimen, 
because global buckling is more sensitive to in-plane dimensions than wrinkling (according to the 
analytical analysis).  
   As shown in Fig.2, the numerical results correlate very well with the analytical ones. Therefore, the 
classical and unified theories with buckling load formulae given in Eq.1, Eq.2 and Eq.4, are verified. 
   For small aspect ratio, the buckling load is very high, because the effectively large width tends to 
strengthen the sandwich plate. As the aspect ratio increases until it reaches unity, global buckling load 
decreases drastically. Regardless of any further increase in aspect ratio beyond the value of unity, 
buckling load stays almost at a constant value. It is interesting that this global buckling behavior of the 
aluminum foam sandwiches is analogous to buckling of homogenous plates. That means, the 
aluminum foam core offers a very good connection to the faces of thin sandwich plates. 
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Figure 2: Effect of aspect ratio to buckling aluminum foam sandwich. The results are for the typical global 
buckling specimen with only the length a varying. 
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Figure 3: Effect of core thickness to buckling of aluminum foam sandwich. The results are for any of the typical 
specimens with only the core thickness tc varying. 

Effect of core thickness 
In this investigation, the core thickness tc of the typical specimens is varied from 5 mm to 30 mm and 
normalized with respect to the width b, while all other geometry parameters are fixed.  
   As can be seen in Fig.3, core thickness affects both buckling load and buckling shape. At the 
beginning stage of increasing core thickness, the sandwich plate exhibits global buckling mode which 
is considered as anti-symmetrical wrinkling with only one half-wave, and corresponding buckling load 
increases with core thickness which is also analogous to homogenous plates. At a certain value of the 
core thickness, the buckling load approaches an onset, and the buckling mode becomes truly anti-
symmetrical wrinkling with a large number of half-waves. It is expected that several other truly anti-
symmetrical wrinkling modes with a less number of half-waves should occur within certain range 
before that onset. For further increase of core thickness after the onset, the wrinkling mode shape 
changes from anti-symmetrical to symmetrical, and buckling load slightly increases for a short range 
of core thickness. It is expected that the buckling load decreases with still further increase of core 
thickness, because of less cooperation between sandwich faces regardless of core material amount 
added. This behavior was well explained for sandwich columns by the unified theory of Hadi and 
Matthews [6] and Léotoing [7]. 
   The finite element results are consistent to the analytical ones, especially to that of Léotoing [7] 
which is given in Eq.4. The other two analytical methods can only predict global buckling (as 
introduced before), and thus have given the unsafe predictions for wrinkling. 

Conclusions 

The present finite element analysis of buckling of sandwich plates with aluminum foam core gives the 
results consistent to the analytical results. It is shown that aluminum foam, when used as core of 
sandwich plates, offers 2-10 times higher buckling resistance than honeycomb does. The sensitivity 
study on aspect ratio shows that buckling behavior of aluminum foam sandwich plates is similar to the 
behavior of homogenous plates. As core thickness increases, buckling load increases until an onset 
value and buckling mode tends to change from global buckling to wrinkling. 
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