Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

Pengembangan algoritma cepat penentuan titik-kontak pahat (cutter contact point)
pada sistem-CAM berbasis model faset 3D untuk pemesinan awal (roughing) dan
akhir (finishing)

Gandjar Kiswanto, A Mujahid
Laboratorium Teknologi Manufaktur
Departemen Teknik Mesin, Universitas Indonesia
Kampus Baru Ul Depok 16424
E-mail : gandjar_kiswanto@eng.ui.ac.id

Abstrak

Dengan meningkatnya kompleksitas produk akhir yang diinginkan, kehandalan sistem-CAM untuk
pemesinan multi-axis menjadi hal yang utama untuk menjamin keakurasian produk akhir. Laboratorium
Teknologi Manufaktur, Departemen Teknik Mesin — Universitas Indonesia, mengembangkan suatu sistem-
CAM untuk pemesinan milling multi-axis (3-5 axis) berbasis model faset 3D yang handal dan memiliki
kecerdasan dalam otomasi perancanaan strategi pembuatan lintasan pahat. Salah satu kebutuhan utama
suatu sistem-CAM adalah pembuatan lintasan pahat (tool path generation). Pada makalah ini disampaikan
hasil penelitian mengenai pengembangan algoritma untuk menentukan titik-kontak pahat (cutter contact
potint, cc-point) baik untuk pemesinan awal (roughing) maupun akhir (finishing). Secara sederhana, titik-
kontak pahat merupakan perpotongan antara bidang potong dengan segitiga model faset 3D. Pada
pembuatan lintasan pahat berbasis model faset 3D, jumlah segitiga sangat mempengaruhi kecepatan
proses perhitungan/penentuan cc-point. Oleh karena itu dibutuhkan algoritma yang dapat dengan cepat
melakukan perhitungan walaupun dengan jumlah segitiga yang banyak. Algoritma atau metode yang
dikembangkan menggunakan prinsip yang disebut 'satu antara dua pilihan' (one between two choices).
Algoritma ini terbukti lebih cepat, terstruktur dan converge dibandingkan dengan algoritma yang mencari
cc-point secara random.

Kata kunci: titik kontak pahat (cc-point), pembuatan lintasan pahat, model faset 3D

Pendahuluan

Dengan perkembangan teknologi manufaktur yang semakin pesat dan semakin tingginya
kompetisi antara produsen produk-produk manufaktur, kebutuhan akan kualitas produk yang
tinggi (high quality product) yang dihasilkan dengan kecepatan produksi yang tinggi (high speed
manufacturing) dengan efisiensi biaya produksi yang tinggi (low cost production) menjadi suatu
prasyarat. Kesemuanya itu membutuhkan sistem pendukung proses manufaktur yang handal.
Salah satu pendukung tersebut adalah sistem-CAM (Computer-Aided Manufacturing).

Departemen Teknik Mesin — Universitas Indonesia sedang mengembangkan sistem-CAM
berbasis model faset 3D untuk pembuatan lintasan pahat proses pemesinan milling multi-axis
yang, bila dibandingkan dengan pembuatan lintasan pahat konvensional berbasis model
parametrik dan/atau solid, dapat menghasilkan lintasan pahat yang cepat dan lebih handal yaitu
yang bebas dari gouging (overcut) dan collision dan berada pada akurasi yang dispesifikasikan.
Model faset 3D sendiri adalah model produk yang direpresentasikan dengan serangkaian segitiga
(mesh of triangles) dengan proses triangulasi terhadap model CAD tiga dimensi dari produk.
Gouging, overcut atau collision adalah terjadinya interferensi antara tools (pahat potong) dengan
produk yang dalam proses pemesinan atau antar komponen yang terlibat dalam proses pemesinan
(a. L. pahat, produk, sistem clamping, dan bagian mesin lainnya) yang menyebabkan cacat produk
hasil pemesinan.

Pada makalah ini disampaikan salah satu hasil penelitian dalam penentuan (pembuatan)
cc-point yang digunakan sebagai dasar dari pembuatan lintasan pahat. Dikembangkan dua metode
yang menghasilkan cc-point dengan cepat. Namun masing-masing metode memiliki kekurangan
dan kelebihannya bila saling dibandingkan satu dengan yang lainnya.

Pembuatan Cc-point pada Model Faset

Hal yang pertama harus dilakukan adalah mendapat roughing points. Roughing point
dapat dianalogikan sebagai cc-point pada pemesinan akhir (finishing). Secara sederhana dapat

M3-028/1

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

dikatakan bahwa untuk mendapatkan roughing points dilakukan dengan mengiriskan bidang z = ¢
dengan model. Irisan ini akan menghasilkan titik-titik perpotongan antara bidang z dengan model.
Karena modelnya berbasis facet segitiga, maka perpotongan terjadi antara bidang z dengan sisi-
sisi segitiga. Bidang-bidang yang digunakan untuk mencari perpotongan ini tentunya bukan satu
bidang saja melainkan bidang-bidang z = ¢; untuk i= 1, 2, ... , k, dimana nilai c; berkisar dari
koordinat z paling rendah sampai koordinat z paling tinggi, atau zy, < Ci < Zp., Untuk
mendapatkan nilai-nilai c; cukup diberikan berapa interval nilai antara c; dan c;; yang dinginkan.
Jadi, masukan (input) pada proses menentukan roughing points ini adalah interval antar bidang
potong. Dalam pencarian roughing points dalam riset ini digunakan nilai interval sama dengan
2.0.

Ada dua algoritma yang bisa digunakan untuk mendapatkan roughing points. Pertama,
melalui brute searching. Metode ini dilakukan dengan mengecek setiap segitiga yang ada apakah
berpotongan dengan bidang z atau tidak. Jika berpotongan, indeks segitiga tersebut disimpan
dalam sebuah struktur data Vector. Pengecekan ini dilakukan untuk setiap bidang z yang akan
diiriskan dengan model facet.

Cara yang kedua adalah menggunakan adjacent searching. Metode ini diawali dengan
mencari secara acak sebuah segitiga yang berpotongan dengan bidang z (sebut saja segitiga U)
Begitu didapatkan satu segitiga tersebut, maka algoritma berjalan sebagai berikut:

1. ambil satu sisi segitiga, misal sisi S, yang berpotongan dengan bidang z,
kemudian tentukan titik perpotongannya. Simpan titik ini pada sebuah struktur
data Vector misalnya.

2. cari segitiga yang memiliki sisi S sebagai salah satu dari tiga sisi-sisnya selain
segitiga yang sudah disebutkan pada no.1 di atas.

3. lakukan kembali langkah no. 1 di atas.

Algoritma akan berhenti jika menemui salah satu dari kondisi-kondisi berikut:

1. Segitiga terakhir yang ditemukan memiliki indeks yang sama dengan segitiga yang
pertama kali ditemukan secara acak, yaitu segitiga U. Kondisi ini dapat terjadi manakala
titik-titik perpotongan membentuk kurva tertutup.

2. Sisi s hanya dimiliki oleh satu segitiga saja, artinya tidak ada segitiga lain yang
bertetangga dengan segitiga tersebut. Ini dapat terjadi pada titik-titik perpotongan yang
membentuk kurva terbuka dan sisi S adalah sisi tepi dari model faset.

3. Tidak ada lagi segitiga yang berpotongan dengan bidang z.

Sama halnya dengan metode brute searching, metode ini dilakukan untuk setiap kali
pengirisan bidang z dengan model faset. Perhatikan gambar berikut sebagai ilustrasinya.

i T viviv

Pencarian Pencarian
berjalan ke kanan betjalan ke kiri

Gambar 1 : Arah pencarian perpotongan antara bidang potong dengan model faset

Ada satu kelebihan utama metode adjacent searching dibandingkan metode brute
searching dalam hal keterurutan. Jika menggunakan brute, setelah pencarian titik-titik potong
selesai dilakukan, sulit untuk melakukan tracking (perjalanan) dari titik satu ke titik lainnya.
Sebab, pencarian segitiga dimulai dari indeks terkecil hingga indeks terakhir di mana belum —
bahkan dipastikan- belum terurut. Istilah terurut merujuk pada kondisi jika suatu titik potong dj
berada dalam jarak paling dekat dengan di.; dibandingkan titik-titik lainnya (ada perkecualian
pada kondisi tertentu, misalnya jika model berbentuk cekungan).

Namun, berbeda jika metode adjacent searching yang digunakan. Sejak awal pencarian
hingga akhir, metode ini justru mempertahankan keurutan ini. Apa sebenarnya manfaat dari

M3-028/2

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

keterurutan ini? Dalam implementasi riil proses milling, pahat akan bekerja jauh lebih efisien jika
titik-titik yang akan dipotong berada dalam posisi terurut berdasarkan kedekatannya. Oleh karena
itu, dalam riset ini digunakan metode adjacent searching dalam menentukan roughing points.

Memotong (slicing) segitiga-segitiga pada model faset

Yang dimaksud adalah mengambil segitiga-segitiga yang berada di sekitar bidang z = c.
Sekitar bidang ini berarti segitiga-segitiga yang berada antara c-¢ dan c+e, dengan € adalah
bilangan real tertentu. Ini dilakukan untuk meningkatkan efisiensi pada saat pencarian segitiga
secara acak yang berpotongan dengan bidang z. Dibandingkan mencari semua segitiga —termasuk
yang berjarak jauh dari c, lebih baik dan lebih cepat mencari segitiga di sekitar c.

Algoritma slicing ini dijelaskan melalui langkah-langkah berikut ini:

1. cari semua vertek yang berada dalam rentang c-¢ dan c+e

2. cari indeks dari masing-masing vertek hasil no.1

3. temukan segitiga-segitiga yang memiliki indeks hasil no.2

Keluaran (output) dari algoritma ini adalah sederetan indeks segitiga yang berada dekat
dengan z = c.

Selain digunakan sebagai tempat pencarian segitiga awal secara acak, segitiga-segitiga ini
dapat pula digunakan untuk memastikan bahwa tidak ada lagi segitiga yang dipotong oleh bidang
zZ=c.

Fragment code dari algoritma ini dapat dilihat di bawabh ini.
Langkah pertama:
S caric semua wertex yvang sawa dengan =, dengarn rentang toleransi
VertexVector wertexes= new VertexWector(l00, 10):
float tolerance= Z;
for{int i=0; i<vertexVector.size():;: i++){
Vertex wertex= (Vertex] wertexWVector.get(i);
if (Math.abs(Math.abs(vertex.getZ ()] - Math.abs(z))] < tolerance) !
vertexes. addVertex (VErtex) ;

}

Langkah kedua:
S/ cari index dari setiap wertex dari hasil di atas
Vector indexes= nhew Vector (100, 10):
for(int i=0; i<wvertexez.size(); i++){
Vertex w= [Vertex) wertexes.get(i);
int found= vertexVWector.index0f (v) ;
if (found '= -1) indexes.addinew Integer (found)):

Langkah ketiga:
A4 temukan index segitiga-segitiga yang memiliki indeks wertex di atas
Vector trianglesIndex= new TriangleVector (100, 10);
for{int i=0; i<indexes.size():; i++){
int counter= 0;
Integer index= [Integer) indexes.get(i):
for{int j=0; J<triangle¥ector.size(); J++){
Triangle t= [Triangle) triangleVector.get(j):
int ind[]= new int[3]:
ind[0]= t.getFirstVertexIndex():
ind[l]= t.getiecondVertexIndex () ;
ind[2]= t.getThirdVertexIndex():

if(ind[0]==index || ind[l]l==index || ind[Z]==index){
if(!'trianglesIndex.contains (new Integer(j))){
trianglesIndex.add (new Integer(jl):
}
A4 satu wertex diniliki bersama oleh maksimal kira-kira 6 segitiga
if (+counter > 7)) break:

M3-028/3

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

Menentukan perpotongan sisi segitiga dengan bidang z

Tahap ini maksudnya menentukan formulasi untuk mencari titik potong bidang z = ¢
dengan sisi dari sebuah segitiga. Sisi segitiga dibentuk oleh dua buah titik pl(x1,yl,z1) dan
p2(x2,y2,z2). Langkah pertama adalah mengecek apakah ¢ berada di dalam rentang z1 dan z2.
Jika iya, maka berarti sisi segitiga tersebut berpotongan dengan bidang z = c. Langkah berikutnya
adalah mencari titik di mana perpotongan terjadi.

Secara matematis, persamaan garis dalam ruang R3 dirumuskan sebagai berikut.

pif{xt,yl.z1 p2(x2 y2,z2

il

*

Berdasarkan gambar di atas, persamaan garis | yang dibentuk oleh 2 titik adalah

X a X2
yl=|bt+|y2 ()
z c z2
a a x1 X2
Karenapl=p2+ | b |,maka | b |=]| yl |—| y2)
c c z1 z2

Dengan demikian persamaan 1) dapat disubstitusi menjadi

X X1 X2 X2
y{=(yl|-|y2 pt+|y2 3)
z z1 z2 z2
. o . z-12
Karena z = ¢, maka nilai t dapat dihitung, yaitu t = —23"
Z1—-17

Maka, dari persamaan 3) dapat diperoleh titik (X,y,z) sebagai titik perpotongan antara
sisi segitiga yang dibentuk oleh titik p1(x1,y1,z1) dan p2(x2,y2,z2) dengan bidang z = c.
Berikut ini adalah fragment code untuk mencari perpotongan ini.

M3-028/4

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

S menghitung t=[{c-z2) fizl-22)
double t= (c - pZ[2])1/(pl[2] - pZ[2]):

A= HL-KE) TR
double x= [(pl[0] - p2[0])*t + p2[0];
Afow=iyl-va) tHya
double w= (pl[1l] - p2[1l]1*t + p2[1l]:
fiz=(zl-2211422
double z= [(pl[2] - p2Z[2]1%C + p2[2]:

if(zx=pl[2] && =Z<=pZ[2]) return hew double[]{x,¥,2}:
else if(z==pi[2] && E<=pl[2]) return new double[]{x,¥,=};
else return mall;

Implementasi algoritma adjacent search dan Hasil

Algoritma ini dapat dijelaskan melalui pseudocode berikut.
1 for z=zp,x to Zyin {
2 while (sliced triangles exists){
do {search a cutted-triangle t randomly}
while (t not found & sliced triangles exists)
}
do {
intersect z with t, get a vertex v
add(v)
search an adjacent triangle of t
10 7} while (found v)
11}

© 0o N o o b~ W

Baris 2 sampai 5 menunjukkan pencarian sebuah segitiga secara acak yang
berpotongan dengan bidang z. Rentang segitiga yang dicari tidak lagi seluruh segitiga melainkan
segitiga yang sudah dilakukan slicing. Sedangkan baris 6 sampai 10 menunjukkan pencarian
segitiga secara adjacent.

Sebagaimana telah dijelaskan diatas, tiga kondisi di mana perulangan (looping) while
berhenti dapat digambarkan sebagai berikut.

1. jika titik-titik membentuk kurva tertutup

2. jika titik-titik membentuk kurva terbuka

avoon

3. jika tidak ada lagi segitiga yang berpotongan

M3-028/5

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

Titik-titik yang diperoleh ini kemudian disimpan dalam sebuah struktur data Vector
misalnya. Berikutnya adalah dengan menggunakan titik-titik ini, dapat dibuat visualisasi
roughing points dan simulasi pergerakan model pahat untuk proses roughing. Hal ini dapat
dilakukan menggunakan cara yang sama dengan visualisasi dan simulasi pergerakan model pahat
pada CC-point di atas.

Berikut ini adalah gambar yang diambil dari visualisasi roughing points dan simulasi
pergerakan model pahat dengan menggunakan sistem-CAM yang dibangun, Hadia-Mill.

M e Tk e

eE U =0y« BN e

2

R e

e P) By [Masisoce [tomtcre | dypinsmonasn | o @ BEOR

Gambar 4: Simulasi pergerakan model pahat pada proses roughing

M3-028/6

Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

Kesimpulan

Metode brute-search menghasilkan cc-point dalam waktu yang lebih cepat ketimbang adjacent
search, namun keterhubungan posisi antara satu cc-point dengan cc-point lainnya tidak dapat
diketahui secara langsung. Sedangkan dengan adjacent search, dihasilkan cc-point yang
keterhubungan posisi antara satu cc-point dengan cc-point lainnya, urutan, langsung diketahui.

Ucapan Terima Kasih

Penulis mengucapkan terima kasih kepada Kementrian Negara Riset dan Teknologi (KNRT)
yang telah membiaya sebagian dari penelitian ini melalui Riset Unggulan Terpadu XII 2005-
2006.

Daftar Acuan

[1]. Byoung K.C, Robert B.J, Sculptured Surface Machining. Kluwer Academic Publishers, 1998.

[2]. Dejonghe P., An integrated approach for tool path planning and generation for multi-axis
milling, ISBN 90-5682-315-9, PhD-thesis, K.U. Leuven, Leuven 2001.

[3]. Kiswanto G., Tool path generation for multi-axis milling based on faceted models, ISBN :
90-5682-449-X, K. U. Leuven, Leuven 2003.

[4]. Lauwers B., Kiswanto G., Kruth J. -P., Development of five-axis milling tool path generation
algorithm based on faceted models, Annals of the CIRP, vol. 52, no. 1, pp. 85-88, 2003.

[5]. Hwang 1.S., Interference-free tool-path generation in the NC machining of parametric
compound surfaces, Computer Aided Design, 1992, vol. 24, no. 12, pp. 675-676.

[6]. Hwang J.S., Chang T.-C., Three-axis machining of compound surfaces using flat and filleted
endmills, Computer Aided Design, 1998, vol. 30, no. 8, pp. 641-647.

[7]. Jensen C.G., Mullins S.H., Anderson D.C., Scallop elimination based on precise 5-axis tool
placement, orientation and step-over calculations, ASME-Advances in Design Automation,
1993, vol. 65-2, pp. 535-544.

[8]. Kiswanto G., Kruth J.-P., Lauwers B., Tool path generation for 5-axis milling based on
faceted models, Journal of Engineering, Vol.1., 2002.

[9]. Kruth J.-P., Klewais P., Optimization and dynamic adaptation of the cutter inclination during
5-axis milling of sculptured surfaces, Annals of CIRP, 1994, vol. 43/1, pp. 443-448.

[10]. Lai J.-Y., Wang D.-J., A strategy for finish cutting path generation of compound surfaces,
Computer in Industry, 1994, no. 25, pp. 189-209.

[11]. http://www.vtk.org

M3-028/7

http://www.vtk.org/

