Seminar Nasional Tahunan Teknik Mesin (SNTTM) V
Universitas Indonesia, 21-23 November 2006

An elastic-Plastic Contact Model of a Sphere against a Hard Flat

Jamari
Mechanical Engineering Department, Faculty of Engineering, Diponegoro University
JI. Prof. Soedarto SH, Tembalang, Semarang 50275 Indonesia
Telp/Fax: +62 24 7460059
E-mail: j.jamari@gmail.com

Abstract

In this paper a theoretical model for the elastic-plastic microcontact model of
asperities is presented. Relation of the contact parameters, such as the mean contact
pressure, the contact area and the contact load as a function of the contact
interference are modeled in the elastic, elastic-plastic and fully plastic contact
regime. Verification of the model is made using the experimental results and is
compared with published theoretical models. Compared to the prediction of the other
contact models, very good agreement between the present model and the
experimental results are found.
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Introduction

Contact deformation occurs when two engineering surfaces are pressed together.
Depending on the scale considered, this contact deformation can be categorized as; macro-contact
and micro-contact. Most surfaces are rough on micro-scale. High points or micro-protrusions,
usually called asperities, exist on most engineering solid surfaces, see Figure 1. In non-lubricated
or boundary lubrication systems, when such surfaces are loaded against each other, the actual
contact takes place at these asperities. Contact will initially occur at a limited amount of asperities
and the number of asperities in contact becomes larger as the normal load increases. Depending
upon the load carried by the asperities and its mechanical properties, the asperities may deform
elastic, elastic-plastic or fully plastic [1].

The deformation states of the surface asperities are very important in studying friction,
wear, lubrication, electrical contact resistance, etc. Plastic deformation changes the surface
topography. Understanding the relationship between local contact properties and surface
topography can lead to the specification of optimized surface topography and manufacturing
processes with respect to the desired functional properties of the surface. Research has been
performed in order to model the deformation behaviour of the bodies in contact [2-15]. This was
pioneered by Greenwood and Williamson [2]. In their model a nominal flat surface is assumed to
be composed with spherical asperities of the same radius and the height of the asperities is
represented by a well-defined statistical distribution function (i.e. Gaussian). The contact analysis
is based on the Hertz theory [3] where the asperities deform elastically. This elastic asperity-
based model has been extended to the contact of rough curved surfaces [4], the contact of two
nominally flat rough surfaces with misaligned asperities [5], the contact of rough surfaces
considering the distribution of the radii of the asperities [6] and elliptic paraboloidal surfaces [7].
However, the aforementioned models are devoted to the elastic contact situation.

Abbot and Firestone [8] introduced the basic plastic contact model which is known as the
profilometric model or surface micro-geometry model. In this model the deformation of a rough
surface against a smooth rigid flat is assumed to be equivalent to the truncation of the
undeformed rough surface at its intersection with the flat so that the contact area is simply the
geometrical intersection of the original profile. The mean contact pressure is equal to the flow
pressure or the indentation hardness of the softer body. Based on the experimental results, Pullen
and Williamson [9] proposed a volume conservation model for the fully plastic contact of a rough
surface. Kucharski et al. [10] confirmed this model by the finite element analysis.

In order to bridge the two extreme models, elastic and fully plastic, Chang et al. (CEB
model) [11] developed an elastic-plastic contact model based on volume conservation of the
plastically deforming asperities. In the CEB model there is no transition regime from the elastic
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to the fully plastic contact regime while Johnson [12] showed, based on the analysis of the
indentation of a sphere on a plane, that there is a long transition regime from the point of initial
yielding to the fully plastic state. Therefore, Zhao et al. (ZMC model) [13] proposed a new
elastic-plastic contact model which includes this transition by mathematical smoothing
expressions to incorporate the elastic and fully plastic contact parameters. Kogut and Etsion (KE
model) [14] performed a detailed finite element analysis on the elastic-plastic contact of a sphere
and a rigid flat. The empirical coefficients for the dimensionless relations for contact load,
contact area and mean contact pressure as a function of contact interference have been provided.
However, the analysis is limited up to the onset of the fully plastic state. A similar work has been
done recently by Jackson and Green (JG model) [15].

383.1 nm

Area: 627.2 x 470.4 um

-317.4 nm

Figure 1. Engineering surface and its asperities.

This paper presents a new elastic-plastic contact model of a sphere against a hard flat. Its
main features are the modeling of the transition from elastic-plastic to fully plastic contact regime
and the modeling of the mean contact pressure in the fully plastic contact regime. The results
show that such parameters play an important role in the analysis of the contact behavior. Studies
of this field have been done extensively by the author by changing the contact parameters [16-
20].

Elastic Contact

When contact interference o is sufficiently small the asperity deforms elastically. For the
elastic contact of a flat against a sphere of radius R, according to the Hertz theory [3], the contact
area A., the contact load P, and the mean contact pressure p. of the asperity can be expressed in
term of w as:

A =Ro (1)
P, :%Ro.swl.s 2)
2] @)

It was shown by the work of Tabor [21] that initial yield occurs when the maximum Hertz
contact pressure reaches p, = 0.6H, or, the average contact pressure p, = 0.4H where H is the
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hardness of the softer material in contact. For a more general representation this relation can be
written as:

Pn =K,H 4)

v

According to Chang et al. [22], based on the von Mises failure criteria, the value of K, in
Equation (4) is related to the Poisson’s ratio V as:

K, = 0.454 +0.41v (%)

Substituting Equation (4) into Equation (3) yields the critical interference @, (elastic to elastic-
plastic):

K H Y
wl:( 2E ]R (6)

Plastic Contact

When o is increased to another critical value @, at which the mean contact pressure p of
the asperity reach its maximum, fully plastic deformation occurs. Most researchers have reported
that this maximum value equals to its hardness H. However, it was shown recently by Jamari and
Schipper [23] using a more accurate measurement that in the fully plastic contact regime the
mean contact pressure reach its maximum and remain constant at a value lower than its hardness,
or:

pp:ChH (7)

where ¢, is the hardness coefficient for the fully plastic contact regime.
The contact area A, was found by [23] the same as was reported by [8], and is equal to the
geometrical intersection of the flat with the original undeformed profile of the asperity:

Ap =27Rw (8)

The contact load P, of the asperity is equal to the contact area multiplied by the mean contact
pressure. Or

P, = 27Rwc, H 9)

The solid expression for the onset of fully plastic interference @, (elastic-plastic to
plastic) is not known, therefore it will be estimated. A simple analysis, similar to [13], is done
based on the contact load. At @ = @, the contact load is equal to Equation (9). At the same time,
the contact load had it been elastic as would be equal to Equation (2). Therefore, the following
inequality can be established:

27Rw,c, H <%R°'5a)21'5 (10)
Or
2 2 2
@, > 3nc H R— 9chz K, H R (a0
2E K,” | 2E

Substituting Equation (6) into Equation (11) yields,
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2
C
®, >9(K'Lj , (12)

With ¢, = 0.75 and K, = 0.6, one obtains

w, > 4w, (13)

The minimum value of @, may also be further estimated using experimental results. The fully
plastic regime of a half-space indented by a rigid sphere according to Francis [24] starts at A/A; =
113.2 and according to Johnson [12] full plasticity starts at Ea&/YR = 40 or P/P; = 360 where A.
and P; is the critical contact area and the critical contact load, respectively, at the initial yield
point and Y is the yield stress. Based on the experimental results of Chaudhri et al. [25] for the
contact problem of a deformable sphere and a rigid flat, the fully plastic contact regime (as
indicated by a constant mean contact pressure) starts at A/A; = 60 for phosphor-bronze and 100
for brass if A/A. is calculated according to the JG model. Or in general:

E:CA (14)

Substituting Equations (1) and (8) into Equation (14) and rearranging results into:

D2 _Ca (15)

Elastic-Plastic Contact

In the present study the approach as used in the ZMC model will be utilized to analyze
the elastic-plastic contact problem of a sphere against a hard flat. The ZMC model employed the
statistical analysis of spherical indentations of Francis [24] where the mean contact pressure in
the elastic-plastic contact regime may be represented by a logarithmic function. By using the
constant Cy for the fully plastic contact regime and following the approach of ZMC, the mean
contact pressure Pep, the contact area A¢p and the contact load Pg, in the elastic-plastic contact
regime are:

Pey = C,H — H( —EKJIM’Z"IM’ (16)
3 Inw, —Inw,
%ﬁﬂ%%[ (”@j] (17)
) — @ W, — W,
2 Inw, —Inw
P, =A,|cH-H|c, —=K, |2~ 19 18
® Ae'{ " (h 3 lena&—lna)l} (18)

Results and Discussions

To illustrate the developed model, the experimental elastic-plastic contact data of
Chaudhri [25] will be used for validation. The results are also plotted along with the theoretical
predictions of the CEB model, the ZMC model, the KE model and the JG model. Chaudhri [25]
performed experiments on the elastic-plastic contact of phosphor-bronze (H =2.72 GPa, E =115
GPa and v = 0.35) and brass (H = 1.8 GPa, E = 115 GPa and v = 0.35) spheres of 3.17 mm
diameter in contact with a sapphire (H = 190 GPa, E = 430 GPa and v = 0.26) plate. In his
experiments, the contact area was measured directly in the elastic and the elastic-plastic contact
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regime but for the fully plastic contact regime the contact area was measured indirectly or after
the load is removed. In the elastic to elastic-plastic contact experiments, the sphere was
compressed between a load cell and a transparent sapphire plate so that the contact area can be
measured directly by a microscope.

Figure 2 and 3 show the non-dimensional mean contact pressure p/(cyH) as a function of
the non-dimensional contact area A/A; for phosphor-bronze and brass material, respectively. It
can be seen from the figures that the proposed elastic-plastic contact model fit very well with the
experimental results from the elastic to the fully plastic contact regime. In these cases, the
coefficient of hardness ¢, = 0.805 and the contact area constant Cx = 40 for phosphor-bronze and
Ch = 0.967 and cp = 90 for brass. In Figure 2, the theoretical predictions of the ZMC model, the
KE model and the JG model predict a higher mean contact pressure for the contact area higher
than the critical contact area in the onset of elastic-plastic regime, while the JG model predicts a
lower mean contact pressure. The ZMC and KE model predict an increasing mean contact
pressure as the contact area increases until the non-dimensional contact area value A/A; = 108 and
A/A; = 220. Beyond these values the mean contact pressure will stay constant at the hardness
indentation value. Instead of the indentation hardness parameter the JG model used the yield
stress parameter. There is no yield stress data available, therefore, in the present analysis the yield
stress was assumed to be H/2.8 [21].
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Fig. 2. Non-dimensional mean contact pressure vs non-dimensional contact area.
o phosphor-bronze experimental data [25].

The JG model predicts the mean contact pressure as a function of the contact area
differently. The mean contact pressure increases as the contact area increases, however, for a
certain value of the contact area the mean pressure reaches a maximum value and then start to
decrease as the contact area increases. As can be seen in Figure 2 and 3 the maximum contact
pressure of the JG model occurs at a value of A/A; = 70 for phosphor-bronze and A/A; = 110 for
brass. For a relatively high value of the contact area the mean contact pressure can reach a value
even lower than the CEB model. The CEB model predicts the mean contact pressure in the
elastic-plastic and fully plastic contact regimes lower than the other models because in this model
there is no transition regime from the elastic to fully plastic and the mean contact pressure is
assumed p, = KVH in the fully plastic regime.
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Fig. 3. Non-dimensional mean contact pressure vs non-dimensional contact area.
A brass experimental data [25].

Figure 4 and 5 present the results of the non-dimensional contact area A/A; as a function
of the non-dimensional normal load P/P. for phosphor-bronze and brass, respectively. As can be
seen the new developed elastic-plastic contact model predicts the contact behaviour best among
the others. The CEB model overestimates the contact area as a function of the contact load
because the mean contact pressure predicted by the CEB model is lower than the actual one. For
the phosphor-bronze the ZMC, KE and JG models underestimates the contact area as the load
increases for all the experimental data but for the brass these models almost coincide for a
relatively low load. However, for the brass case, as the load increases the JG model start to
deviate and overestimates the contact area. The ZMC and KE models predict the contact area as

the load increases rather well.
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Fig. 4. Non-dimensional contact area vs non-dimensional contact load.
o phosphor-bronze experimental data [25].
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Fig. 5. Non-dimensional contact area vs non-dimensional contact load.
A brass experimental data [25].

Conclusions

A theoretical model for the normal contact of elastic-plastic of a sphere against a hard flat
has been presented. Formulae describing the contact parameters have been developed in order to
predict the contact behaviour. The developed model was compared with published experimental
and theoretical data in terms of the mean contact pressure, the contact area and the contact load.

It was found that the developed model predicts the contact behaviour best among other
models. In the fully plastic contact regime the mean contact pressure is observed to be lower than
the indentation hardness as often reported. The transition from the elastic to the elastic-plastic
state is almost the same for all the proposed models. However, in this study, the transition from
the elastic-plastic to the fully plastic is found depending on the material properties. Substantial
differences were shown in the comparison between the present model with the available proposed
models.
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