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Abstract 
 

In this paper a theoretical model for the elastic-plastic microcontact model of 
asperities is presented. Relation of the contact parameters, such as the mean contact 
pressure, the contact area and the contact load as a function of the contact 
interference are modeled in the elastic, elastic-plastic and fully plastic contact 
regime. Verification of the model is made using the experimental results and is 
compared with published theoretical models. Compared to the prediction of the other 
contact models, very good agreement between the present model and the 
experimental results are found. 
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Introduction 

Contact deformation occurs when two engineering surfaces are pressed together. 
Depending on the scale considered, this contact deformation can be categorized as; macro-contact 
and micro-contact. Most surfaces are rough on micro-scale. High points or micro-protrusions, 
usually called asperities, exist on most engineering solid surfaces, see Figure 1. In non-lubricated 
or boundary lubrication systems, when such surfaces are loaded against each other, the actual 
contact takes place at these asperities. Contact will initially occur at a limited amount of asperities 
and the number of asperities in contact becomes larger as the normal load increases. Depending 
upon the load carried by the asperities and its mechanical properties, the asperities may deform 
elastic, elastic-plastic or fully plastic [1].  

The deformation states of the surface asperities are very important in studying friction, 
wear, lubrication, electrical contact resistance, etc. Plastic deformation changes the surface 
topography. Understanding the relationship between local contact properties and surface 
topography can lead to the specification of optimized surface topography and manufacturing 
processes with respect to the desired functional properties of the surface. Research has been 
performed in order to model the deformation behaviour of the bodies in contact [2-15]. This was 
pioneered by Greenwood and Williamson [2]. In their model a nominal flat surface is assumed to 
be composed with spherical asperities of the same radius and the height of the asperities is 
represented by a well-defined statistical distribution function (i.e. Gaussian). The contact analysis 
is based on the Hertz theory [3] where the asperities deform elastically. This elastic asperity-
based model has been extended to the contact of rough curved surfaces [4], the contact of two 
nominally flat rough surfaces with misaligned asperities [5], the contact of rough surfaces 
considering the distribution of the radii of the asperities [6] and elliptic paraboloidal surfaces [7]. 
However, the aforementioned models are devoted to the elastic contact situation. 

Abbot and Firestone [8] introduced the basic plastic contact model which is known as the 
profilometric model or surface micro-geometry model. In this model the deformation of a rough 
surface against a smooth rigid flat is assumed to be equivalent to the truncation of the 
undeformed rough surface at its intersection with the flat so that the contact area is simply the 
geometrical intersection of the original profile. The mean contact pressure is equal to the flow 
pressure or the indentation hardness of the softer body.  Based on the experimental results, Pullen 
and Williamson [9] proposed a volume conservation model for the fully plastic contact of a rough 
surface. Kucharski et al. [10] confirmed this model by the finite element analysis. 

In order to bridge the two extreme models, elastic and fully plastic, Chang et al. (CEB 
model) [11] developed an elastic-plastic contact model based on volume conservation of the 
plastically deforming asperities.  In the CEB model there is no transition regime from the elastic 
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to the fully plastic contact regime while Johnson [12] showed, based on the analysis of the 
indentation of a sphere on a plane, that there is a long transition regime from the point of initial 
yielding to the fully plastic state. Therefore, Zhao et al. (ZMC model) [13] proposed a new 
elastic-plastic contact model which includes this transition by mathematical smoothing 
expressions to incorporate the elastic and fully plastic contact parameters. Kogut and Etsion (KE 
model) [14] performed a detailed finite element analysis on the elastic-plastic contact of a sphere 
and a rigid flat. The empirical coefficients for the dimensionless relations for contact load, 
contact area and mean contact pressure as a function of contact interference have been provided. 
However, the analysis is limited up to the onset of the fully plastic state. A similar work has been 
done recently by Jackson and Green (JG model) [15].  
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Figure 1. Engineering surface and its asperities. 

 

This paper presents a new elastic-plastic contact model of a sphere against a hard flat. Its 
main features are the modeling of the transition from elastic-plastic to fully plastic contact regime 
and the modeling of the mean contact pressure in the fully plastic contact regime. The results 
show that such parameters play an important role in the analysis of the contact behavior. Studies 
of this field have been done extensively by the author by changing the contact parameters [16-
20].   
 
Elastic Contact 

When contact interference ω is sufficiently small the asperity deforms elastically. For the 
elastic contact of a flat against a sphere of radius R, according to the Hertz theory [3], the contact 
area Ae, the contact load Pe and the mean contact pressure pe of the asperity can be expressed in 
term of ω as: 
  
 ωπRAe =  (1) 
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It was shown by the work of Tabor [21] that initial yield occurs when the maximum Hertz 

contact pressure reaches pm = 0.6H, or, the average contact pressure pe = 0.4H where H is the 
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hardness of the softer material in contact. For a more general representation this relation can be 
written as: 
 
  (4) HKp vm =
 
According to Chang et al. [22], based on the von Mises failure criteria, the value of Kv in 
Equation (4) is related to the Poisson’s ratio v as:   
 
  (5) vKv 41.0454.0 +=
 
Substituting Equation (4) into Equation (3) yields the critical interference ω1 (elastic to elastic-
plastic): 
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Plastic Contact 

When ω is increased to another critical value ω2 at which the mean contact pressure p of 
the asperity reach its maximum, fully plastic deformation occurs. Most researchers have reported 
that this maximum value equals to its hardness H. However, it was shown recently by Jamari and 
Schipper [23] using a more accurate measurement that in the fully plastic contact regime the 
mean contact pressure reach its maximum and remain constant at a value lower than its hardness, 
or:   
 
  (7) Hcp hp =

 
where ch is the hardness coefficient for the fully plastic contact regime. 
The contact area Ap was found by [23] the same as was reported by [8], and is equal to the 
geometrical intersection of the flat with the original undeformed profile of the asperity: 
  
 ωπRAp 2=  (8) 
  
The contact load Pp of the asperity is equal to the contact area multiplied by the mean contact 
pressure. Or 
 
 HcRP hp ωπ2=  (9) 
 

The solid expression for the onset of fully plastic interference ω2 (elastic-plastic to 
plastic) is not known, therefore it will be estimated. A simple analysis, similar to [13], is done 
based on the contact load. At ω = ω2, the contact load is equal to Equation (9). At the same time, 
the contact load had it been elastic as would be equal to Equation (2). Therefore, the following 
inequality can be established: 
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Substituting Equation (6) into Equation (11) yields, 

M3-021/3 



Seminar Nasional Tahunan Teknik Mesin (SNTTM) V 
Universitas Indonesia, 21-23 November 2006 

 

 1

2

2 9 ωω ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>

v

h

K
c  (12) 

 
With ch = 0.75 and Kv = 0.6, one obtains 
 
 12 14ωω >  (13) 
 

The minimum value of ω2 may also be further estimated using experimental results. The fully 
plastic regime of a half-space indented by a rigid sphere according to Francis [24] starts at A/Ac = 
113.2 and according to Johnson [12] full plasticity starts at Ea/YR ≈ 40 or P/Pc ≈ 360 where Ac 
and Pc is the critical contact area and the critical contact load, respectively, at the initial yield 
point and Y is the yield stress. Based on the experimental results of Chaudhri et al. [25] for the 
contact problem of a deformable sphere and a rigid flat, the fully plastic contact regime (as 
indicated by a constant mean contact pressure) starts at A/Ac ≈ 60 for phosphor-bronze and 100 
for brass if A/Ac is calculated according to the JG model. Or in general: 
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Substituting Equations (1) and (8) into Equation (14) and rearranging results into: 
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Elastic-Plastic Contact 

In the present study the approach as used in the ZMC model will be utilized to analyze 
the elastic-plastic contact problem of a sphere against a hard flat. The ZMC model employed the 
statistical analysis of spherical indentations of Francis [24] where the mean contact pressure in 
the elastic-plastic contact regime may be represented by a logarithmic function. By using the 
constant ch for the fully plastic contact regime and following the approach of ZMC, the mean 
contact pressure pep, the contact area Aep and the contact load Pep in the elastic-plastic contact 
regime are: 
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Results and Discussions 

To illustrate the developed model, the experimental elastic-plastic contact data of 
Chaudhri [25] will be used for validation. The results are also plotted along with the theoretical 
predictions of the CEB model, the ZMC model, the KE model and the JG model. Chaudhri [25] 
performed experiments on the elastic-plastic contact of phosphor-bronze (H = 2.72 GPa, E = 115 
GPa and v = 0.35) and brass (H = 1.8 GPa, E = 115 GPa and v = 0.35) spheres of 3.17 mm 
diameter in contact with a sapphire (H = 190 GPa, E = 430 GPa and v = 0.26) plate. In his 
experiments, the contact area was measured directly in the elastic and the elastic-plastic contact 
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regime but for the fully plastic contact regime the contact area was measured indirectly or after 
the load is removed. In the elastic to elastic-plastic contact experiments, the sphere was 
compressed between a load cell and a transparent sapphire plate so that the contact area can be 
measured directly by a microscope.  
 Figure 2 and 3 show the non-dimensional mean contact pressure p/(chH) as a function of 
the non-dimensional contact area A/Ac for phosphor-bronze and brass material, respectively. It 
can be seen from the figures that the proposed elastic-plastic contact model fit very well with the 
experimental results from the elastic to the fully plastic contact regime.  In these cases, the 
coefficient of hardness ch = 0.805 and the contact area constant cA = 40 for phosphor-bronze and 
ch = 0.967 and cA = 90 for brass. In Figure 2, the theoretical predictions of the ZMC model, the 
KE model and the JG model predict a higher mean contact pressure for the contact area higher 
than the critical contact area in the onset of elastic-plastic regime, while the JG model predicts a 
lower mean contact pressure. The ZMC and KE model predict an increasing mean contact 
pressure as the contact area increases until the non-dimensional contact area value A/Ac = 108 and 
A/Ac = 220. Beyond these values the mean contact pressure will stay constant at the hardness 
indentation value. Instead of the indentation hardness parameter the JG model used the yield 
stress parameter. There is no yield stress data available, therefore, in the present analysis the yield 
stress was assumed to be H/2.8 [21]. 
 a   
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Fig. 2. Non-dimensional mean contact pressure vs non-dimensional contact area. 

○ phosphor-bronze experimental data [25]. 
 

The JG model predicts the mean contact pressure as a function of the contact area 
differently. The mean contact pressure increases as the contact area increases, however, for a 
certain value of the contact area the mean pressure reaches a maximum value and then start to 
decrease as the contact area increases. As can be seen in Figure 2 and 3 the maximum contact 
pressure of the JG model occurs at a value of A/Ac ≈ 70 for phosphor-bronze and A/Ac ≈ 110 for 
brass. For a relatively high value of the contact area the mean contact pressure can reach a value 
even lower than the CEB model. The CEB model predicts the mean contact pressure in the 
elastic-plastic and fully plastic contact regimes lower than the other models because in this model 
there is no transition regime from the elastic to fully plastic and the mean contact pressure is 
assumed pp = KvH in the fully plastic regime.  
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Fig. 3. Non-dimensional mean contact pressure vs non-dimensional contact area. 

∆ brass experimental data [25]. 
 

Figure 4 and 5 present the results of the non-dimensional contact area A/Ac as a function 
of the non-dimensional normal load P/Pc for phosphor-bronze and brass, respectively. As can be 
seen the new developed elastic-plastic contact model predicts the contact behaviour best among 
the others. The CEB model overestimates the contact area as a function of the contact load 
because the mean contact pressure predicted by the CEB model is lower than the actual one. For 
the phosphor-bronze the ZMC, KE and JG models underestimates the contact area as the load 
increases for all the experimental data but for the brass these models almost coincide for a 
relatively low load. However, for the brass case, as the load increases the JG model start to 
deviate and overestimates the contact area. The ZMC and KE models predict the contact area as 
the load increases rather well.     
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Fig. 4. Non-dimensional contact area vs non-dimensional contact load. 

○ phosphor-bronze experimental data [25]. 
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Fig. 5. Non-dimensional contact area vs non-dimensional contact load. 

∆ brass experimental data [25]. 
 
Conclusions 

A theoretical model for the normal contact of elastic-plastic of a sphere against a hard flat 
has been presented. Formulae describing the contact parameters have been developed in order to 
predict the contact behaviour. The developed model was compared with published experimental 
and theoretical data in terms of the mean contact pressure, the contact area and the contact load. 

It was found that the developed model predicts the contact behaviour best among other 
models. In the fully plastic contact regime the mean contact pressure is observed to be lower than 
the indentation hardness as often reported. The transition from the elastic to the elastic-plastic 
state is almost the same for all the proposed models. However, in this study, the transition from 
the elastic-plastic to the fully plastic is found depending on the material properties. Substantial 
differences were shown in the comparison between the present model with the available proposed 
models. 
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