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ABSTRACT 
A higher-order compact schemes originally developed by Wilmand Demuren (1998) has 

been reproduced for solving steady natural convection for 2-D problem. The method is based on 
low-storage Runge-Kutta schemes for temporal discrezation and fourt-order compact finite 
difference schemes for spatial discretization.  Difficulty related to the pressure can be overcome by 
using artificial compressibility method. For high Rayleigh Number (107-109) the result have a good 
agreement with the result obtain by Le Quere. 

Key word: compact schemes, natural convection 
PENDAHULUAN 
1. Persamaan Atur Konveksi Alami 

Dalam bentuk dua dimensional, persamaan atur untuk aliran konveksi alami dapat disajikan 
seperti berikut (Le Quere,1990): 
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Bentuk non-dimensional ini diperoleh dengan membagi variabel-variabel dengan harga referensi 
yang bersangkutan, untuk panjang Lr = H, kecepatan Vr = (α/H)Ra-0.5, bilangan Rayleigh Ra = 
(gβΔTH3)/(να), referensi waktu tr = (H2/α) Ra-0.5. Untuk temperatur, dengan penggunaan definisi-
definisi berikut : θ = (T-Tr)/(Th-Tc), Tr = (Th+Tc)/2 dan Pr = (ν/α).  

2. Diskritasi Waktu 
Diskritasi waktu untuk persamaan momentum yang dipergunakan untuk Runge- Kutta scheme 

orde-4 dari Williamson dan Demuren (1998) didefinisikan sebagai berikut: 
M

i

MMM tHbuu Δ+= ++ 11
         (5) 

yang dalam hal ini, Δt = time step, bM = Runge-Kutta scheme coefficient,  aM= Runge-Kutta scheme 
coefficient, ui

M = komponen kecepatan arah xi pada sub tingkat ke-M, = tekanan. M
iP
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 Tabel 2.1 Runge-Kutta scheme coefficient orde-4 dari Carpenter dan Kennedy 
M aM BM

1 0 0.14965902 
2 -0.41789047 0.37921031 
3 -1.19215169 0.82295502 
4 -1.69778469 0.69945045 
5 -1.51418344 0.15305724 

 
3. Diskritasi Ruang 

Skema beda-hingga orde-2 untuk turunan pertama memiliki galat dispersi yang besar, sedangkan 
skema kompak beda hingga memiliki kelebihan yaitu akurasi tinggi, fleksibel dan pengoperasiannya 
lebih mudah. 

a. Order Satu. Bentuk diskritisai turunan pertama dengan pendekatan skema kompak beda 
hingga orde-4 dan orde-6 dirumuskan oleh Lele (Wilson dan Demuren, 1998). Bentuk persamaannya 
adalah seperti berikut : 
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yang dalam hal ini :   
Δx        = Lx/Nx  

         = jumlah grid point xN

         = turunan pertama dari variabel '
iΦ iΦ terhadap x 

  α, a, b  = koefisien skema kompak 

Turunan terhadap y dan z dapat dilakukan dengan cara yang sama. Untuk skema orde-empat maka ; 
α=1/4, a=3/2 dan b=0. Untuk skema orde-6 maka; α=1/4, a=14/9, dan b=1/9. 

Perbandingan skema ekplisit beda-hingga dan skema kompak beda hingga dari turunan pertama 
ditunjukkan dalam tabel 2.2 Di sini terlihat bahwa skema kompak beda hingga memiliki grid stensil 
yang lebih sedikit, koefisien galat pemenggalan berkurang menjadi ¼ untuk orde-4 dan 1/9 untuk 
orde-6 dari koefisien beda tengah ekplisit untuk orde yang sama. 

Table 2.2 Comparison between finite difference scheme and first order compact scheme 
 

Skema Kesalahan pemenggalan Jumlah stensil 
Beda tengah orde-4 (-4/5!)( 4)xΔ ( )5Φ  5 

Kompak orde-4 (-1/5!)( 4)xΔ ( )5Φ  3 

Beda tengah orde-6 (-36/7!)( 4)xΔ ( )7Φ  7 

Kompak orde-6 (-4/7!)( 4)xΔ ( )7Φ  5 
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Menurut Hu dkk(1996) resolusi dari diskritisasi turunan pertama  dapat dianalisa dengan 
mentransformasi persamaan  konveksi 1-D sebagai berikut: 
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Dalam mode Fourier  maka : ikxet)(~Φ=Φ
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Sehingga persamaan konveksi 1-D menjadi : 
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k* was  numerical wave number. 
Numerical wave number untuk skema kompak beda hingga dari turunan pertama dalah : 
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Simpangan dari kurva real(k*) terhadap k menunjukkan galat dispersi dan simpangan dari kurva  
imag(k*) menunjukkan galat disipasi.   
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Gambar 2.1 Galat dispersi (a) dan galat disipasi (b) untuk pendekatan numerik  
                 dari  turunan pertama 

Syarat batas diselesaikan dengan skema kompak orde-3 dengan persamaan sebagai berikut : 
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2=bsα  dan , , 2/51 −=bsa 22 =bsa 2/11 =bsa adalah koefisien orde-3 dari syarat batas pada i=1. 

Persamaan yang sama juga digunakan untuk syarat batas pada i=N. 
 Untuk skema orde-6, syarat batas diselesaikan dengan skema ekplisit beda-hingga orde-5 
untuk titik i=1 dan i=N. Persamaan syarat batas adalah sebagai berikut : 
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dimana : 
 abs1=-296/105      abs5=-215/12 
 abs2=415/48      abs6=791/80 
 abs3=-125/8      abs7=-25/8 
 abs4=985/48      abs8=245/336 
Untuk syarat batas pada i=2 dan i=N-1 juga digunakan skema ekplisit orde-lima sebagai berikut : 
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dimana : 
anb1=-3/16      anb5=115/144   
anb2=-211/180      anb6=-1/3 
anb3=109/48      anb7=23/40 
anb4=-35/24      anb8=-1/72  

 
b. Turunan kedua. Persamaan skema kompak beda hingga untuk turunan kedua adalah sebagai 

berikut : 
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dimana : 
        = turunan kedua dari variabel "

iΦ iΦ  terhadap x 

ba,,α  =  koefisien skema kompak beda hingga turunan kedua 

Untuk orde-empat, α=1/10, , b=0 dan untuk orde-enam, α=2/11, 5/6=a 11/12=a , b=3/11 
 Perbandingan antara skema beda-hingga ekplisit dan skema kompak beda hingga ditunjukkan 
dalam tabel 2.3. Di sini terlihat bahwa skema kompak beda hingga memiliki stensil lebih sedikit, 
koefisien galat pemenggalan berkurang menjadi ½ untuk orde-4 dan ¼ untuk orde-6 dari koefisien 
beda tengah ekplisit untuk orde yang sama. 
Tabel 2.3 Perbandingan skema beda hingga dan skema kompak turunan kedua 
Skema Kesalahan pemenggalan Jumlah stensil 
Beda tengah orde-4 (-8/6!)(Δx)4Φ(6) 5 
Kompak orde-4 (-3.6/6!)(Δx)4Φ(6) 3 
Beda tengah orde-6 (-72/8!)(Δx)6Φ(8) 7 
Kompak orde-6 (-16.7/8!)(Δx)6Φ(8) 5 

 
 

Analisa resolusi untuk turunan kedua dari pendekatan numerik skema kompak beda hingga 
dilakukan dengan cara yang sama dengan analisa turunan pertama. Numerical wave number untuk 
skema kompak beda hingga dari turunan kedua adalah : 
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Deviasi dari (k*Δx)2 terhadap (kΔx)2 ditampilkan dalam bentuk grafik gambar 2.2 untuk 
beberapa skema beda-hingga. 
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Gambar 2.2 Galat disipasi untuk pendekatan numerik dari  turunan kedua 

  
 Galat disipasi dari berbagai skema beda-hingga tampak pada gambar 2.2 dapat diketahui bahwa 
nilai numerical wavenumber untuk skema kompak lebih mendekati nilai exact wavenumber. 

Kondisi batas pada i=1 dan i=N diselesaikan dengan skema kompak orde-3 sebagai berikut : 
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dimana, αbs =11 dan abs1=13, abs2=-27, abs3=15 dan abs4 =-1 adalah koefisien skema kompak orde-3. 
4. Metode Kompresibilitas Tiruan (Artificial Compressibility)

Konsep metode kompresibilitas tiruan adalah menambahkan turunan terhadap waktu pada 
persamaan kontinyuitas. Bentuk modifikasi persamaan adalah : 

0=∇+
∂
∂ V

t
p ε         (22) 

dimana ε adalah konstanta positip. Persamaan ini tidak mempunyai arti fisik jika kondisi tunak belum 
tercapai. 
 
 
 
THEORETICAL TREATMENT 
 
1.  Diskritisasi persamaan momentum   

Diskritisasi persamaan momentum dengan skema Runge-Kutta adalah seperti berikut : 
Kecepatan arah x (u) 
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Kecepatan arah y (v) 
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Diskritasi turunan ruang dengan skema kompak orde-4 adalah seperti berikut : 
Diskritisasi turunan pertama 
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Diskritisasi turunan kedua 
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2. Diskritisasi persamaan energi.   
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Diskritasi turunan ruang dengan skema kompak orde-4 adalah seperti berikut : 
Diskritisasi turunan pertama 
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Diskritisasi turunan kedua 
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3. Diskritisasi metode kompresibilitas tiruan. 
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4. Diskritisasi syarat batas  
Dalam penelitian ini kasus yang dibahas adalah konveksi alami dalam 

kotak 2-D dengan dinding bawah dan atas merupakan dinding adiabatis, dinding kiri mendapat 
pemanasan dan dinding kanan mendapat pendinginan. Pada seluruh dinding kecepatan bernialai nol 
sedangkan syarat batas tekanan dan temperatur adalah seperti berikut : 
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Gambar 3.1 Domain dan syarat batas 
 
a. Syarat batas kecepatan  
Turunan pertama. 
Untuk i=1 dan i=nx 
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=+      (55) 

( )
( )M

jnx

M

jnx

M

jnx

M

jnx

M

jnx

M

jnx vvvv
x

vxxvxx ,3,2,1,2,1, 152713111 −−−− −+−
Δ

=+     (56) 

Untuk j=1 dan j=ny 

( )
( )M

i

M

i

M

i

M

i

M

i

M

i uuuu
y

uyyuyy 4,3,2,1,22,1, 152713111 −+−
Δ

=+      (57) 

( )
( )M

nyi

M

nyi

M

nyi

M

nyi

M

nyi

M

nyi uuuu
y

uyyuyy 3,2,1,,21,, 152713111 −−−− −+−
Δ

=+     (58) 

( ) ( )M

i

M

i

M

i

M

i

M

i

M

i vvvv
y

vyyvyy 4,3,2,1,22,1, 152713111 −+−
Δ

=+      (59) 

( )
( )M

nyi

M

nyi

M

nyi

M

nyi

M

nyi

M

nyi vvvv
y

vyyvyy 3,2,1,,21,, 152713111 −−−− −+−
Δ

=+     (60) 

b. Syarat batas tekanan 
Untuk i=1 dan i=nx 

0,1 =M

jpx             (61) 

0, =M

jnxpx              (62) 

Untuk j=1 dan j=ny 

01, =M

ipy             (63) 

0, =M

nyiuy             (64) 

c. Syarat batas temperatur 
Turunan pertama 
Untuk i=1 dan i=nx 

( )M

j

M

j

M

j

M

j

M

j

M

j x
x ,1,2,3,4,5,1 254836163

12
1 θθθθθθ −+−+−
Δ

=     (65) 
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( )M

jnx

M

jnx

M

jnx

M

jnx

M

jnx

M

jnx x
x ,,1,2,3,4, 254836163

12
1 θθθθθθ −−+−
Δ

= −−−−     (66) 

Untuk j=1 dan j=ny 

01, =M

iyθ             (67) 

0, =M

nyiyθ             (68) 

Turunan kedua 
Untuk i=1 dan i=nx 

( )
( )M

j

M

j

M

j

M

j

M

j

M

j x
xxxx ,4,3,2,12,2,1 152713111 θθθθθθ −+−

Δ
=+      (69) 

( )
( )M

jnx

M

jnx

M

jnx

M

jnx

M

jnx

M

jnx x
xxxx ,3,2,1,2,1, 152713111 −−−− −+−

Δ
=+ θθθθθθ     (70) 

Untuk j=1 dan j=ny 

( ) ( )M

i

M

i

M

i

M

i

M

i

M

i y
yyyy 4,3,2,1,22,1, 152713111 θθθθθθ −+−

Δ
=+      (71) 

( )
( )M

nyi

M

nyi

M

nyi

M

nyi

M

nyi

M

nyi y
yyyy 3,2,1,,21,, 152713111 −−−− −+−

Δ
=+ θθθθθθ     (72) 

 
 Bilangan Nusselt pada dinding (x=0) dan tengah (x=0.5) dihitung dengan persamaan (Le 
Quere, 1990): 

dy
x

uRaNu ∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
1

0

5.0 θθ           (73) 

Sedangkan Bilangan Nusselt lokal pada dinding dihitung dengan persamaan: 

x
Nu

∂
∂

−=
θ

            (74) 

Stream Function dihitung dengan persamaan : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−=
∂
∂

+
∂
∂

y
u

x
v

yx 2

2

2

2 ϕϕ
         (75)  

 
dengan syarat batas di dinding adalah ϕ=0.  
Vortisitas dihitung dengan persamaan 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
y
u

x
vω            (76) 

Residu dihitung dengan persamaan : 
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∑
∑ ∂

∂
+

∂
∂

=
n

y
v

x
u

siduRe          (77) 

n=jumlah grid 
HASIL  DAN  PEMBAHASAN 
 

Perhitungan dilakukan dengan PC Pentium III kecepatan 550 MHz dengan RAM 64 MB. 
Program ditulis dalam Bahasa Fortran dengan perangkat lunak Lahey Fortran. Untuk visualisasi hasil 
menggunakan perangkat lunak Matlab 6. Ukuran grid adalah 101x101 untuk Ra=106, 151x151 untuk 
Ra=107 dan 201x201 untuk Ra=108 dan Ra=5x108 dengan grid seragam. 
 Gambar 4.4 menunjukkan peningkatan Ra menyebabkan kecepatan konvergensi berkurang. 
Hal ini disebabkan peningkatan Ra membuat suku difusi berkurang pengaruhnya terhadap 
perhitungan. Suku difusi mempunyai sifat sebagai peredam, sehingga perhitungan stabil. Dengan 
melemahnya suku difusi maka suku adveksi menguat dan menggantikan dominasi suku difusi. 
Penguatan suku adveksi membuat sistem persamaan atur cenderung bersifat hiperbolik. Residu 
berosilasi tajam dan sulit untuk diredam. Untuk nilai Ra lebih dari 5x108 perhitungan sangat sulit 
untuk mencapai konvergensi. 
Residu dihitung dihitung dengan persamaan : 

Residu =
∑

∑ ∂
∂

+
∂
∂

n
y
v

x
u

           (73) 

n = jumlah grid. 
 Untuk mengetahui akurasi perhitungan Bilangan Nusselt (Nu) pada penelitian ini, hasil 
perhitungan untuk berbagai nilai Bilangan Rayleigh dibandingkan dengan korelasi dari Catton 
(Incropera & DeWitt, 1990) yaitu : 

29.0

Pr2.0
Pr18.0 ⎟

⎠
⎞

⎜
⎝
⎛

+
= RaNu        (74) 

 
Pada penelitian ini Nu rata-rata untuk x=0 dan x=0.5 dihitung dengan persamaan : 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
1

0

5.0 dy
x

uRaNu θθ       (75) 

Korelasi antara Nu terhadap Ra ditunjukkan dengan persamaan : 
Nu=0.1562Ra0.28884        (76) 
Gambar 4.1 menunjukkan bahwa peningkatan nilai Ra menyebabkan nilai Nu rata-rata meningkat. 
Perbandingan dengan korelasi Catton menunjukkan hasil yang cukup dekat.  
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Gamb
ar 4.1 Perbandingan nilai Nu pada x=0 dengan korelasi dari Catton 

Bilangan Nusselt adalah parameter yang menunjukkan perbandingan antara koefisen 
perpindahan panas konveksi dari koefisien perpindahan panas konduksi.Untuk nilai Ra yang sangat 
rendah (Ra<1000) aliran konveksi sangat lemah sehingga perpindahan panas murni disebabkan oleh 
konduksi. Hal ini dapat dilihat pada gambar 4.1 pada Ra rendah nilai Nu rata-rata adalah 1. 

Bilangan Nusselt lokal dihitung dengan persamaan : 

x
Nu

∂
∂

−=
θ

         (77) 

Pengaruh Ra terhadap Nu lokal dapat dilihat pada gambar 4.5. Menurut gambar 4.5 dapat diketahui 
bahwa peningkatan nilai Ra juga menyebabkan nilai Nu lokal meningkat. Nu lokal tertinggi terletak 
pada bagian bawah (y=0) untuk dinding x=0, semakin ke atas Nu lokal berkurang. Hal ini 
menunjukkan bahwa semakin ke atas gradien temperatur berkurang. Sedangkan pada dinding x=1, Nu 
lokal tertinggi terjadi pada bagian atas (y=1) dan semakin ke bawah nilainya berkurang. 

Tinjauan secara fisis akan diberikan pada bagian di bawah ini. Gambar 4.2 dan 4.3 
menampilkan vektor kecepatan untuk Ra 106 dan 107. Di sini terlihat bahwa kecepatan fluida pada 
dinding kiri dan kanan relatif cepat dari pada bagian tengah. Pada dinding kiri fluida mendapat 
pemanasan sehingga densitas fluida mengecil . Penyusutan densitas pada dinding kiri menyebabkan 
terjadinya gaya apung sehingga fluida bergerak ke atas. Aliran fluida setelah mencapai dinding  atas 
bergerak turun dan selanjutnya membelok ke kanan dan mengalami pendinginan. Gerakan fluida turun 
setelah mencapai dinding atas disebabkan oleh pengaruh inersia. Hal ini terjadi karena nilai Bilangan 
Prandtl untuk udara adalah Pr<1 sehingga keseimbangan persamaan aliran dipengaruhi oleh inersia. 
Untuk nilai Pr>1 maka pengaruh inersia akan semakin berkurang sehingga keseimbangan persamaan 
aliran dipengaruhi oleh friction dan buoyancy. Setelah mencapai dinding kanan fluida membelok ke 
bawah, karena dinding kanan temperaturnya lebih rendah fluida mengalami pendinginan sehingga 
densitasnya meningkat, dengan demikian kecepatan aliran bertambah karena pengaruh gaya gravitasi. 
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Setelah mencapai dinding bawah aliran fluida bergerak ke atas karena pengaruh inersia kemudian 
berbelok ke kiri dan mengalami pemanasan pada dinding kiri.  

Pembelokan aliran fluida di dekat dinding x=0 bagian atas menyebabkan gradien temperatur 
berkurang karena aliran fluida juga mengangkut panas dari dinding x=0. Hal ini juga bisa diamati dari 
distribusi Bilangan Nusselt lokal di dinding x=0, Nu lokal semakin ke atas semakin rendah. Sedangkan 
peristiwa yang terjadi didekat dinding x=1 adalah kebalikan dari peristiwa aliran di dekat dinding x=0.  

Pengaruh Bilangan Rayleigh terhadap vektor kecepatan adalah peningkatan Ra menyebabkan 
lapis batas hidrodinamis di dinding menipis. Ini berarti gradien kecepatan di dinding meningkat dan 
gaya gesek juga meningkat. Dari gambar 4.6 terlihat bahwa vortisitas di dekat dinding kiri dan kanan 
cukup besar. Hal ini karena gaya gesek di dinding kiri dan kanan relatif lebih besar. Gambar 4.8 
menunjukkan peningkatan Ra juga membuat lapis batas thermal di dinding menipis sehingga gradien 
temperatur di dinding meningkat. Distribusi temperatur yang relatif panas di bagian kiri atas semakin 
condong ke kanan dan distribusi temperatur yang relatif dingin di bagian kiri bawah semakin condong 
ke kiri, hal ini karena kecepatan fluida yang membawa panas juga meningkat seiring peningkatan Ra. 

Dari gambar 4.9 terlihat bahwa garis-garis isobar kelihatan mulus dengan demikian pemakaian 
skema kompak orde-4 seperti yang dijelaskan di atas bisa menghilangkan osilasi numerik pada 
tekanan.  

Gambar 4.10 sampai 4.11 menunjukkan kurva isothermal dan stream function untuk berbagai 
domain berbentuk persegi panjang dan non persegipanjang (non rectangular). Perhitungan dilakukan 
pada Ra=107 dengan  Δx=1/200 dan  Δy=1/200. Di sini terlihat aliran bersirkulasi melalui 
sepanjang dinding batas dari domain. 
 Gambar 4.12 menunjukkan visualisasi hasil untuk kasus dengan variabel berdimensi. Diskripsi 
dari kasus ini adalah dinding kiri dijaga pada 200C dan dinding kanan 00C, kotak berisi udara kering 
dengan sifat-sifat sebagai berikut(Bejan, 1984) : 
Tekanan   P = 1 atm 
Temperatur   T = 100 C 
Densitas    ρ = 0.001274 g/cm3

Viskositas kinematik  ν = 0.141 cm2/s 
Difusivitas thermal  α = 0.196 cm2/s 
Koefisien ekspansi thermal β = 0.0035214 K-1

Bilangan Rayleigh  Ra = 2x107

Kotak dengan dimensi 20x20 cm dan perhitungan dilakukan dengan jumlah grid 151x151. 
 

Hasil perhitungan dan perbandingan dengan hasil peneliti lainnya disajikan dalam tabel 4.1, 4.2 
dan 4.3. Kolom terakhir tabel menunjukkan perbandingan antara hasil penelitian ini dengan hasil 
penelitian dari Le Quere.  



Seminar Nasional Tahunan Teknik Mesin (SNTTM) V 
Universitas Indonesia, 21-23 November 2006 

M2-009/15 

 
 

 

Tabel.4.1Hasil Perhitungan dan Perbandingan untuk Ra=106

 
 Sekarang Le Quere De Vahl Davies Beda (%) 

ϕmiddle 0.0164552 0.016384 0.01632 0.43 
ϕmax 0.0169117 0.016811 0.01675 0.60 
X 0.150000 0.1500 0.151 0.00 
Y 0.550000 0.5470 0.547 0.55 

umax(1/2,y) 0.0649050 0.064834 0.06463 0.11 
Y 0.850000 0.850 0.850 0.00 

vmax(x,1/2) 0.220236 0.2206 0.21936 0.17 
X 0.040 0.038 0.0379 5.26 

Nuwall 8.73394 8.8252 8.817 1.03 
Numiddle 8.82299 8.8244 8.779 0.02 
Numax 17.1575 17.5343 17.925 2.15 

Y 0.030 0.039 0.0378 23.08 
Numin 0.98427 0.97948 0.989 0.49 

Y 1.0 1.0 1.0 0.00 
 
 

Tabel 4.2 Hasil Perhitungan dan Perbandingan untuk Ra=107

 
 sekarang Le Quere Lauriat & 

Altimir 
Kelson Beda (%) 

ϕmiddle 0.00936819 0.00928496 - 0.9275 0.90 
ϕmax 0.00964076 0.00953872 - 0.9528 1.07 
X 0.0866667 0.086 - 0.086 0.78 
Y 0.553333 0.556 - 0.556 0.48 
umax(1/2,y) 0.0473129 0.046986 0.0468 0.04687 0.70 
Y 0.88 0.879 0.874 0.880 0.11 
vmax(x,1/2) 0.221048 0.21118 0.2287 0.2209 4.67 
X 0.02 0.021 0.021 0.0213 4.76 
Nuwall 16.2068 16.523 16.56 16.5 1.91 
Numiddle 16.5638 16.523 16.46 16.5 0.25 
Numax 40.3192 39.3947 40.15 - 2.35 
Y 0.00667 0.018 0.016 - 62.94 
Numin 1.37516 1.36635 1.376 - 0.64 
Y 1.0 1.0 1.0 - 0.00 
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Tabel 4.3 Hasil Perhitungan dan Perbandingan untuk Ra=108

 
 Sekarang Le Quere Kelson Beda (%) 
ϕmiddle 0.00541453 0.005232 0.005203 3.49 
ϕmax 0.00552848 0.005385 0.005357 2.66 
X 0.05 0.048 0.0484 4.17 
Y 0.550 0.553 0.551 0.54 
umax(1/2,y) 0.033394 0.03219 0.03116 3.74 
Y 0.9300 0.928 0.926 0.22 
vmax(x,1/2) 0.2196 0.2222 0.2209 1.17 
X 0.0100 0.012 0.012 16.67 
Nuwall 29.811 30.225 30.0 1.37 
Numiddle 30.9465 30.225 30.2 2.39 

  
Stream Function dihitung dengan persamaan : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−=
∂
∂

+
∂
∂

y
u

x
v

yx 2

2

2

2 ϕϕ
         (78) 

dengan syarat batas di dinding adalah ϕ=0.  
Vortisitas dihitung dengan persamaan 

⎟⎟
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−
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∂
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y
u

x
vω            (79) 

 
 
 
SUMMARY AND CONCLUSIONS 
Kesimpulan yang dapat ditarik dari penelitian ini adalah : 
 
 
1. Hasil peneletian memiliki kedekatan yang baik dengan hasil penelitian dari  

     Le Quere. Perbedaan hasil penelitian dengan penelitian dari Le Quere kurang  dari 5%. 
2. Hasil perhitungan memiliki konvergensi yang baik sampai pada Bilangan  
     Rayleigh 5x108. 
3. Dengan skema kompak orde-4 osilasi numerik pada tekanan dapat dihilangkan. 
4. Hubungan antara Bilangan Nusselt (Nu) terhadap Bilangan Rayleigh (Ra) ditunjukkan dengan 

korelasi Nu=0.1562Ra0.28884. Korelasi tersebut berlaku untuk 103≤Ra≤108. 
Conclusions: 

Skema kompak orde-tinggi selain memiliki akurasi yang baik mempunyai bentuk yang 
sederhana dan mudah diaplikasikan. Bagi para pembaca yang berminat penelitian ini masih terbuka 
kemungkinan untuk  penyelesaian kasus    3-D atau penyelesaian kasus 2-D dengan menggunaan grid 
yang tidak seragam.  
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Gambar 4.1 

Vektor kecepatan untuk Ra=106
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c) Ra=106

b) Ra=105a) Ra=103

 
 
 

 
Gambar 4.2 

Vektor kecepatan untuk Ra=107
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 b) Ra=105

c) Ra=106 d) Ra=107

e) Ra=108
f) Ra=5x108

a) Ra=103

Gambar 4.5 Distribusi Nu pada x= 0 untuk berbagai nilai Ra=103,105,106,107,108 dan 5x108. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


